Selecting Double-Base Propellants for a 120 mm Mortar Rocket Assisted Projectile through DoE

Authors

  • Mr. Leandro Augusto Iorio Pires Military Institute of Engineering
  • Mr. Victor Vinicius Valentim da Silva Military Institute of Engineering
  • Dr. Fernando Cunha Peixoto Military Institute of Engineering
  • Dr. Emmanuel Péres de Araújo Military Institute of Engineering

DOI:

https://doi.org/10.3849/aimt.01969

Keywords:

rocket assisted projectile, design of experiments, characteristic velocity, low vulnerability ammunition, green propellants

Abstract

Range extension of a 120 mm mortar projectile can be attained by a rocket motor within the grenade body. This study deals with the design of experiments-based methodology to identify double-base propellant compositions conceptually feasible for such a motor, from a thermochemical viewpoint. Formulations were defined under low vulnerability and green principles, using Minitab® Statistical Software, following mixture design techniques to account for intrinsic constraints. The thermochemical behavior of these formulations was simulated with a specialized software, taking theoretical characteristic velocity c* as a performance indicator. An empirical model was then fitted, permitting the identification of a set of favorable compositions leading to c* enhancement, regarding a reference double-base propellant, thus unveiling the design possibility of rocket motor downsizing.

 

References

DAVENAS, A. The Main Families and Use of Solid Propellants. In: DAVENAS, A. (ed.). Solid Rocket Propulsion Technology. Oxford: Pergamon Press, 1993. pp. 329–367. ISBN 0-08-040999-7.

MANSON, M.P. Guns, Mortars & Rockets. 2nd ed. London: Brassey’s Ltd, 1997. ISBN 1-85753-172-8.

SUTTON, G.P. and O. BIBLARZ. Rocket Propulsion Elements. 9th ed. Hoboken: Wiley, 2017. ISBN 978-1-1187-5388-0.

ARKHIPOV, V. and K. PERFILIEVA. Optimization of Construction of the Rocket-Assisted Projectile. In: MATEC Web of Conferences, 2017, 110, pp. 8–13. DOI 10.1051/matecconf/201711001003.

SARHAN, A.M., M.A. EI-SENBAWI and A. NAFEA. Rocket Assisted Projectiles – A Computational Analysis of Trajectory. In: International Conference on Aerospace Sciences and Aviation Technology. Cairo: ASAT, 2003, 10, pp. 267–277. DOI 10.21608/asat.2013.24426.

LIPANOV, A.M., S.A. KOROLEV and I.G. RUSYAK. Optimization of Aerodynamic Form of Projectile for Solving the Problem of Shooting Range Increasing. In: AIP Conference Proceedings. Novosibirsk: AIP, 2017, 1893(1), 030085. DOI 10.1063/1.5007543.

KIM, K.-M., J.-H. CHO and D.-J. JEONG. Study on Composite Solid Propellants for Rocket Assisted Projectile. Journal of the Korean Society for Aeronautical & Space Sciences, 2010, 38(11), pp. 1081–1086. DOI 10.5139/jksas.2010.38.11.1081.

UDDIN, M.N., H.K. BHUIYAN and G. MOSTOFA. An Experimental Investigation of Long-Range Projectiles under Different Wind Conditions. American Journal of Mechanical Engineering, 2021, 9(1), pp. 7–17. DOI 10.12691/ajme-9-1-2.

FLEEMAN, E.L. Propulsion Considerations in Tactical Missile Design. In: SCHETZ, J. (ed.). Tactical Missile Design. Blacksburg: American Institute of Aeronautics and Astronautics, Inc., 2006. pp. 81–139. ISBN 978-1563477829.

ARFSD-TR-99002 - 120-mm Ammunition Feasibility Assessment for Light Artillery [Technical Report] [online]. 2000 [viewed 2024-11-22]. Available from: https://apps.dtic.mil/sti/tr/pdf/ADA376461.pdf

HERVÉ, A. Double-Base Propellants. In: DAVENAS, A. (ed.). Solid Rocket Propulsion Technology. Oxford: Pergamon Press, 1993. pp. 369–413. ISBN 0-08-040999-7.

MALBO, P. and C. BAR. New Insensitive Rifled 120-mm Mortar Ammunition with Enhanced Lethal Performance [online]. In: Insensitive Munitions & Energetic Materials Technology Symposium. Bristol: IMEMTS, 2006 [viewed 2024-11-25]. Available from: https://imemg.org/eventsandmedia/imemts-bristol-2006/system/

DAVENAS, A. Solid Rocket Propulsion Technology. Oxford: Pergamon Press, 1993. ISBN 0-08-040999-7.

KUBOTA, N. Combustion of Composite Propellants. In: KUBOTA, N. Propellants and Explosives – Thermochemical Aspects of Combustion. Weinheim: Wiley, 2002, pp. 157–197. ISBN 3-527-30210-7.

KUBOTA, N. Combustion of Double-Base Propellants. In: KUBOTA, N. Propellants and Explosives – Thermochemical Aspects of Combustion. Weinheim: Wiley, 2002, pp. 123–155. ISBN 3-527-30210-7.

KUBOTA, N. Propellants and Explosives – Thermochemical Aspects of Combustion. Weinheim: Wiley, 2002. ISBN 3-527-30210-7.

DEJEAIFVE, A., A. FANTIN, L. MONSEUR and R. DOBSON. Making Progress Towards «Green» Propellants. Propellants, Explosives, Pyrotechnics, 2018, 43(8), pp. 831–837. DOI 10.1002/prep.201800026.

DEJEAIFVE, A., A. SARBACH, B. RODUIT, P. FOLLY and R. DOBSON. Making Progress Towards Green Propellants – Part II. Propellants, Explosives, Pyrotechnics, 2020, 45(8), pp. 1185–1193. DOI 10.1002/prep.202000059.

POWELL, I.J. Insensitive Munitions – Design Principles and Technology Developments. Propellants, Explosives, Pyrotechnics, 2016, 41(3), pp. 409–413. DOI 10.1002/prep.201500341.

Munitions Safety Information Analysis Center (MSIAC) [online]. [viewed 2024-07-09]. Available from: https://www.msiac.nato.int/

Insensitive Munitions European Manufacturers Group (IMEMG) [online]. [viewed 2024-07-09]. Available from: https://imemg.org/

SOTSKY, L., R. MAZZEI and N. AL-SHEHAB. Insensitive Munitions (IM) Enhancement of the 120 mm M934A1 High Explosive (HE) Mortar Cartridge. In: Insensitive Munitions & Energetic Materials Technology Symposium. Bristol, 2006.

HARA, M., W.A. TRZCIŃSKI, S. CUDZIŁO, M. SZALA, Z. CHYŁEK and Z. SURMA. Thermochemical Properties, Ballistic Parameters and Sensitivity of New RDX-Based Propellants. Central European Journal of Energetic Materials, 2020, 17(2), pp. 223–238. DOI 10.22211/cejem/122326.

LIANG, T., Y. ZHANG, Z. MA, M. GUO, Z. XIAO, J. ZHANG, M. DONG, J. FAN, Z. GUO and C. LIU. Energy Characteristics and Mechanical Properties of Cyclotrimethylenetrinitramine (RDX)-Based Insensitive High-Energy Propellant. Journal of Materials Research and Technology, 2020, 9(6), pp. 15313–15323. DOI 10.1016/j.jmrt.2020.09.132.

DAVENAS, A. The Main Families and Use of Solid Propellants. In: DAVENAS, A. (ed.). Solid Rocket Propulsion Technology. Oxford: Pergamon Press, 1993. pp. 329–367. ISBN 0-08-040999-7.

MANSON, M.P. Guns, Mortars & Rockets. 2nd ed. London: Brassey’s Ltd, 1997. ISBN 1-85753-172-8.

SUTTON, G.P. and O. BIBLARZ. Rocket Propulsion Elements. 9th ed. Hoboken: Wiley, 2017. ISBN 978-1-1187-5388-0.

ARKHIPOV, V. and K. PERFILIEVA. Optimization of Construction of the Rocket-Assisted Projectile. In: MATEC Web of Conferences, 2017, 110, pp. 8–13. DOI 10.1051/matecconf/201711001003.

SARHAN, A.M., M.A. EI-SENBAWI and A. NAFEA. Rocket Assisted Projectiles – A Computational Analysis of Trajectory. In: International Conference on Aerospace Sciences and Aviation Technology. Cairo: ASAT, 2003, 10, pp. 267–277. DOI 10.21608/asat.2013.24426.

LIPANOV, A.M., S.A. KOROLEV and I.G. RUSYAK. Optimization of Aerodynamic Form of Projectile for Solving the Problem of Shooting Range Increasing. In: AIP Conference Proceedings. Novosibirsk: AIP, 2017, 1893(1), 030085. DOI 10.1063/1.5007543.

KIM, K.-M., J.-H. CHO and D.-J. JEONG. Study on Composite Solid Propellants for Rocket Assisted Projectile. Journal of the Korean Society for Aeronautical & Space Sciences, 2010, 38(11), pp. 1081–1086. DOI 10.5139/jksas.2010.38.11.1081.

UDDIN, M.N., H.K. BHUIYAN and G. MOSTOFA. An Experimental Investigation of Long-Range Projectiles under Different Wind Conditions. American Journal of Mechanical Engineering, 2021, 9(1), pp. 7–17. DOI 10.12691/ajme-9-1-2.

FLEEMAN, E.L. Propulsion Considerations in Tactical Missile Design. In: SCHETZ, J. (ed.). Tactical Missile Design. Blacksburg: American Institute of Aeronautics and Astronautics, Inc., 2006. pp. 81–139. ISBN 978-1563477829.

ARFSD-TR-99002 - 120-mm Ammunition Feasibility Assessment for Light Artillery [Technical Report] [online]. 2000 [viewed 2024-11-22]. Available from: https://apps.dtic.mil/sti/tr/pdf/ADA376461.pdf

HERVÉ, A. Double-Base Propellants. In: DAVENAS, A. (ed.). Solid Rocket Propulsion Technology. Oxford: Pergamon Press, 1993. pp. 369–413. ISBN 0-08-040999-7.

MALBO, P. and C. BAR. New Insensitive Rifled 120-mm Mortar Ammunition with Enhanced Lethal Performance [online]. In: Insensitive Munitions & Energetic Materials Technology Symposium. Bristol: IMEMTS, 2006 [viewed 2024-11-25]. Available from: https://imemg.org/eventsandmedia/imemts-bristol-2006/system/

DAVENAS, A. Solid Rocket Propulsion Technology. Oxford: Pergamon Press, 1993. ISBN 0-08-040999-7.

KUBOTA, N. Combustion of Composite Propellants. In: KUBOTA, N. Propellants and Explosives – Thermochemical Aspects of Combustion. Weinheim: Wiley, 2002, pp. 157–197. ISBN 3-527-30210-7.

KUBOTA, N. Combustion of Double-Base Propellants. In: KUBOTA, N. Propellants and Explosives – Thermochemical Aspects of Combustion. Weinheim: Wiley, 2002, pp. 123–155. ISBN 3-527-30210-7.

KUBOTA, N. Propellants and Explosives – Thermochemical Aspects of Combustion. Weinheim: Wiley, 2002. ISBN 3-527-30210-7.

DEJEAIFVE, A., A. FANTIN, L. MONSEUR and R. DOBSON. Making Progress Towards «Green» Propellants. Propellants, Explosives, Pyrotechnics, 2018, 43(8), pp. 831–837. DOI 10.1002/prep.201800026.

DEJEAIFVE, A., A. SARBACH, B. RODUIT, P. FOLLY and R. DOBSON. Making Progress Towards Green Propellants – Part II. Propellants, Explosives, Pyrotechnics, 2020, 45(8), pp. 1185–1193. DOI 10.1002/prep.202000059.

POWELL, I.J. Insensitive Munitions – Design Principles and Technology Developments. Propellants, Explosives, Pyrotechnics, 2016, 41(3), pp. 409–413. DOI 10.1002/prep.201500341.

Munitions Safety Information Analysis Center (MSIAC) [online]. [viewed 2024-07-09]. Available from: https://www.msiac.nato.int/

Insensitive Munitions European Manufacturers Group (IMEMG) [online]. [viewed 2024-07-09]. Available from: https://imemg.org/

SOTSKY, L., R. MAZZEI and N. AL-SHEHAB. Insensitive Munitions (IM) Enhancement of the 120 mm M934A1 High Explosive (HE) Mortar Cartridge. In: Insensitive Munitions & Energetic Materials Technology Symposium. Bristol, 2006.

HARA, M., W.A. TRZCIŃSKI, S. CUDZIŁO, M. SZALA, Z. CHYŁEK and Z. SURMA. Thermochemical Properties, Ballistic Parameters and Sensitivity of New RDX-Based Propellants. Central European Journal of Energetic Materials, 2020, 17(2), pp. 223–238. DOI 10.22211/cejem/122326.

LIANG, T., Y. ZHANG, Z. MA, M. GUO, Z. XIAO, J. ZHANG, M. DONG, J. FAN, Z. GUO and C. LIU. Energy Characteristics and Mechanical Properties of Cyclotrimethylenetrinitramine (RDX)-Based Insensitive High-Energy Propellant. Journal of Materials Research and Technology, 2020, 9(6), pp. 15313–15323. DOI 10.1016/j.jmrt.2020.09.132.

MEYER, R., J. KÖHLER and A. HOMBURG. Explosives. 7th ed. Weinheim: Wiley, 2015. ISBN 978-3-527-68959-0.

ELBASUNEY, S., A. FAHD, H.E. MOSTAFA, S.F. MOSTAFA and R. SADEK. Chemical Stability, Thermal Behavior, and Shelf-Life Assessment of Extruded Modified Double-Base Propellants. Defence Technology, 2018, 14(1), pp. 70–76. DOI 10.1016/j.dt.2017.11.003.

ELBASUNEY, S., A.M.A. ELGHAFOUR, M. RADWAN, A. FAHD, H. MOSTAFA, R. SADEK and A. MOTAZ. Novel Aspects for Thermal Stability Studies and Shelf-Life Assessment of Modified Double-Base Propellants. Defence Technology, 2019, 15(3), pp. 300–305. DOI 10.1016/j.dt.2018.09.005.

YU, H., S. SUN, J. GAO, X. JIN, J. LIU and F. LI. Application of Nano-Sized RDX in CMDB Propellant with High Solid Content. Propellants, Explosives, Pyrotechnics, 2022, 47(1). DOI 10.1002/prep.202100076.

LIU, J., X. KE, L. XIAO, G. HAO, Y. RONG, C. JIN, W. JIANG and F. LI. Application and Properties of Nano-Sized RDX in CMDB Propellant with Low Solid Content. Propellants, Explosives, Pyrotechnics, 2018, 43(2), pp. 144–150. DOI 10.1002/prep.201700211.

BRINCK, T. Introduction to Green Energetic Materials. In: BRINCK, T. (ed.). Green Energetic Materials. Chichester: Wiley, 2014. ISBN 1-119-94129-6.

BÖHNLEIN-MAUß, J. and H. KRÖBER. The REACH Impact on Gun Propellant Formulations. Propellants, Explosives, Pyrotechnics, 2017, 42(1), pp. 54–61. DOI 10.1002/prep.201600183.

European Chemicals Agency [online]. [viewed 2023-09-25]. Available from: https://echa.europa.eu/

European Chemicals Agency – Search for Chemicals [online]. [viewed 2024-05-26]. Available from: https://echa.europa.eu/information-on-chemicals

KUBOTA, N. Propellants and Explosives – Thermochemical Aspects of Combustion. Weinheim: Wiley, 2015. pp. 151–194. ISBN 3-527-69351-3.

WARREN, L.R., Z. WANG, C.R. PULHAM and C.A. MORRISON. A Review of the Catalytic Effects of Lead-Based Ballistic Modifiers on the Combustion Chemistry of Double Base Propellants. Propellants, Explosives, Pyrotechnics, 2021, 46(1), pp. 13–25. DOI 10.1002/prep.202000167.

MARADEN, A., S. ZEMAN, J. ZIGMUND and M. MOKHTAR. Physical and Thermal Impact of Lead Free Ballistic Modifiers. Thermochimica Acta, 2018, 662, pp. 16–22. DOI 10.1016/j.tca.2018.02.002.

JORGE, R.M. and A.A.M.F. FILHO. Characterization of New Lead-Free Ballistic Modifiers and Phthalate-Free Plasticizers in Propellants. Journal of Aerospace Technology and Management, 2019, 11, pp. 15–18. DOI 10.5028/jatm.etmq.54.

GAŃCZYK-SPECJALSKA, K., K. CIEŚLAK, M. JAKUBCZAK, K. DROŻDŻEWSKA-SZYMAŃSKA, W.N. TOMASZEWSKI and P. PRASUŁA. The Effect of Citrate Plasticizers on the Properties of Nitrocellulose Granules. Propellants, Explosives, Pyrotechnics, 2023, 48(6), e202200305. DOI 10.1002/prep.202200305.

PubChem Compound Summary for CID 6505, Acetyl Tributyl Citrate [online]. [viewed 2024-06-16]. Available from: https://pubchem.ncbi.nlm.nih.gov/compound/Acetyl-tributyl-citrate

FRYŠ, O., P. ČESLA, P. BAJEROVÁ, M. ADAM and K. VENTURA. Optimization of Focused Ultrasonic Extraction of Propellant Components Determined by Gas Chromatography/Mass Spectrometry. Talanta, 2012, 99, pp. 316–322. DOI 10.1016/j.talanta.2012.05.058.

FURSTENAU, R. and R.W. HUMBLE. Thermochemistry. In: HUMBLE, R.W., G.N. HENRY and W.J. LARSON. Space Propulsion Analysis and Design. New York: McGraw-Hill Companies, Inc., 1995, pp. 149–178. ISBN 978-0-07-031320-0.

HUMBLE, R.W., G.N. HENRY and W.J. LARSON. Space Propulsion Analysis and Design. New York: McGraw-Hill Companies, Inc., 1995. ISBN 978-0-07-031320-0.

GORDON, S. and B.J. McBRIDE. Computer Program for Calculation of Complex Chemical Equilibrium Compositions and Applications – I – Analysis [online]. 1994 [viewed 2024-06-18]. Available from: https://ntrs.nasa.gov/api/citations/19950013764/downloads/19950013764.pdf

GORDON, S. and B.J. McBRIDE. Computer Program for Calculation of Complex Chemical Equilibrium Compositions and Applications – II – User’s Manual and Program Description [online]. 1996 [viewed 2024-06-18]. Available from: https://ntrs.nasa.gov/citations/19960044559

CORNELL, J.A. Experiments with Mixtures. 2nd ed. New York: Wiley, 1990. ISBN 0-471-52221-X.

MONTGOMERY, D.C. Mixture Experiments. In: MONTGOMERY, D.C. Design and Analysis of Experiments. Hoboken: Wiley, 2020, pp. 461–472. ISBN 978-1-119-72210-6.

FREDERICK, R.A. and J.J. WHITEHEAD. Predicting Hybrid Propellant Regression Rate Using Response Surfaces. Journal of Propulsion and Power, 2009, 25(3), pp. 815–818. DOI 10.2514/1.14418.

DE ARAÚJO, E.P., L.J. MASCHIO, L.G.F. PEREIRA, L.H. GOUVÊA and R. VIEIRA. Thermal, Viscosimetric and Thermomechanical Combined Assessment of Mixture Modelled Composite Fuels for Hybrid Propulsion. Propellants, Explosives, Pyrotechnics, 2022, 47(4), e202100314. DOI 10.1002/prep.202100314.

BOX, G.E.P., J.S. HUNTER and W.G. HUNTER. Statistics for Experimenters. 2nd ed. Hoboken: Wiley, 2005. ISBN 0-471-71813-0.

MONTGOMERY, D.C. Experiments with Computer Models. In: MONTGOMERY, D.C. Design and Analysis of Experiments. Hoboken: Wiley, 2020, pp. 454–461. ISBN 978-1-119-72210-6.

BORGES, C.N., M.C. BREITKREITZ, R.E. BRUNS, L.M.C. SILVA and I.S. SCARMINIO. Unreplicated Split-Plot Mixture Designs and Statistical Models for Optimizing Mobile Chromatographic Phase and Extraction Solutions for Fingerprint Searches. Chemometrics and Intelligent Laboratory Systems, 2007, 89(2), pp. 82–89. DOI 10.1016/j.chemolab.2007.06.002.

JEONG, J.-Y. and S.-H. CHOI. Propellant Characteristics Used for a Rocket-Assisted Projectile with Aluminium Contents. Journal of the Korean Society for Propulsion Engineers, 2019, 23(5), pp. 60–66. DOI 10.6108/kspe.2019.23.5.060.

FAHD, A., H.E. MOSTAFA and S. ELBASUNEY. Certain Ballistic Performance and Thermal Properties Evaluation for Extruded Modified Double-Base Propellants. Central European Journal of Energetic Materials, 2017, 14(3), pp. 621–635. DOI 10.22211/cejem/70206.

TUNESTÅL, E. Increased Impulse of Solventless Extruded Double Base Rocket Propellant by Addition of High Explosives RDX and FOX-7 [online]. In: Insensitive Munitions & Energetic Materials Technology Symposium. Portland: NDIA, 2018 [viewed 2024-09-18]. Available from: https://ndia.dtic.mil/wp-content/uploads/2018/imem/20152_Tunestal_Paper.pdf

National Institute of Standards Chemistry Webbook [online]. [viewed 2024-07-18]. Available from: https://webbook.nist.gov/chemistry

NIST-JANAF Thermochemical Tables [online]. [viewed 2024-07-18]. Available from: https://janaf.nist.gov/

PERRY, R.H. and D.W. GREEN (eds.). Perry’s Chemical Engineers’ Handbook. 8th ed. New York: McGraw-Hill, 2008. ISBN 0-07-154208-6.

SPEIGHT, J.G. (ed.). Lange’s Handbook of Chemistry. 16th ed. New York: McGraw-Hill, 2005. ISBN 0-07-143220-5.

VATANI, A., M. MEHRPOOYA and F. GHARAGHEIZI. Prediction of Standard Enthalpy of Formation by a QSPR Model. International Journal of Molecular Sciences, 2007, 8(5), pp. 407–432. DOI 10.3390/i8050407.

MIL-STD-2105D. Hazard Assessment Tests for Non-Nuclear Munitions [online]. 2011 [viewed 2024-09-18]. Available from: https://imemg.org/wp-content/uploads/MIL-STD-2105D.pdf

WANG, B.B., X. LIAO, L.T. DELUCA and W.D. HE. Effects of Particle Size and Content of RDX on Burning Stability of RDX-Based. Defence Technology, 2022, 18(7), pp. 1247–1256. DOI 10.1016/j.dt.2021.05.009.

ZHANG, F., D.P. ZHU, Q. LIU, Z.T. LIU and P. DU. Study on the Effect of RDX Content on the Properties of Nitramine Propellant. Defence Technology, 2017, 13(4), pp. 246–248. DOI 10.1016/j.dt.2017.05.020.

SZKLARSKI, A., R. GŁĘBOCKI and M. JACEWICZ. Impact Point Prediction Guidance Parametric Study for 155 mm Rocket Assisted Artillery Projectile with Lateral Thrusters. Archive of Mechanical Engineering, 2020, 67(1), pp. 31–56. DOI 10.24425/ame.2020.131682.

Downloads

Published

30-05-2025

Issue

Section

Original research article

Categories

How to Cite

Iorio Pires, L. A., Valentim da Silva, V. V., Cunha Peixoto, F., & Péres de Araújo, E. (2025). Selecting Double-Base Propellants for a 120 mm Mortar Rocket Assisted Projectile through DoE. Advances in Military Technology, 20(1), 239-261. https://doi.org/10.3849/aimt.01969

Similar Articles

1-10 of 178

You may also start an advanced similarity search for this article.