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Abstract:  

The paper proposes a mathematical model of a five-fragment nonlinear frequency-

modulated signal with a reduced level of the lateral lobes of the autocorrelation func-

tion. The decrease in the maximum level of the lateral lobes of the autocorrelation 

function is due to an increase in the number of signal fragments, a rational choice of 

their frequency-time characteristics, and compensation of frequency-phase distortions at 

their junctions. It is shown that this leads to an improvement in the spectral characteris-

tics of the resulting signals. An estimate of the quality of detection of the synthesized 

signal against the background of reflections from local objects is obtained. 
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1 Introduction 

The experience of the Air Force units of the Armed Forces of Ukraine shows that the 

enemy widely uses cruise missiles and Shahed/Geran-type attack drones to strike at 

the territory of Ukraine. The detection and tracking of such targets by air traffic con-

trol radars is difficult due to their small effective scattering surface and flight altitude. 

For this reason, the maximum detection range of targets of this class by ground sur-

veillance radars is (40-50) km. 

It should be noted that ground-based surveillance radars for airspace control tra-

ditionally have a maximum detection range of up to 400 km, meaning that the 

detection of low-altitude targets is significantly affected by the effect of the curvature 

of the Earth’s surface, and targets at low altitudes, starting from a certain range, fall 
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into the radio shadow region. For this reason, to ensure the maximum range of detec-

tion of targets at small angles, radars of this class have antenna patterns oriented along 

the line of sight (Fig. 1), i.e., the antenna “liesˮ on the Earthʼs surface with its slope at 

approximately half power level. 
 

 

Fig. 1 Orientation of the antenna pattern of a typical airspace control radar 

In such conditions, the detection of low-altitude targets in the vast majority of 

cases occurs in the area of reflections from local objects, the radius of which can be 

(30-40) km. 

When using signals with intra-pulse frequency modulation (complex signals), an 

important stage of processing is their compression in the time domain [1-4]. This 

makes it possible to increase the signal-to-noise ratio and provide the required range 

resolution. The intensity of the compressed signal at the output of a matched filter 

(MF) varies over time in accordance with its autocorrelation function (ACF), and in 

addition to the main peak (MP), it has side lobes (SL), which can be quite long in time. 

For radar signals with linear frequency modulation (LFM), the maximum level of the 

SL (LSL, MLSL) is approximately −13.5 dB [2]. 

In the presence of passive interference (PI), SL of the signals reflected from other 

areas of the range will be superimposed. This leads to a decrease in the degree of non-

stationarity of the PI by expanding the areas of influence of reflections from the 

earth’s surface, i.e., to their appearance in areas that were previously free of them. As 

a result, targets that could previously be observed in the intervals between interference 

appear to be masked by the SL overlays of compressed signals coming from other 

range areas. It should be noted that under the influence of long-range powerful reflec-

tions, the total background level of the PI can be quite high, which will lead to 

a deterioration in the quality of detecting echo signals of targets [4].  

It is possible to reduce the influence of this effect on the quality indicators of de-

tecting echo signals against the background of nonstationary PI by reducing the MLSL 

ACF of the sensing signals. A number of papers [5-12] emphasize the expediency of 

using multifragment nonlinear frequency modulated (NLFM) signals with reduced 

MLSL ACF, which are described using mathematical models (MM) of several types. 

In formalizing the description, a mathematical technique is widely used, which con-

sists in using the current or shifted time scale (MM current or shifted time scale). For 

the current time MM, the description of signal counts is continuous for the entire dura-

tion of the radio pulse [5-10]. The difference between the MM of shifted time is that 

when describing each subsequent signal fragment, the initial time is shifted to zero, 
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due to which the instantaneous phase and frequency of the signal start from zero 

[10-12].  

Further, as a solution to reduce the negative impact of the SL of ACF of complex 

signals when detecting them against the background of nonstationary PI, a five-

fragment NLFM signal is synthesized. The performance of the new MM NLFM signal 

consisting of five LFM fragments is confirmed by mathematical modeling. The degree 

of influence of the SL of ACF on the quality of detection of echo signals in the pres-

ence of nonstationary reflections from the earth’s surface is estimated. The estimates 

of the detection quality indicators for different degrees of nonstationarity of the inter-

fering background are obtained, and the results are compared with the case of using 

a classical LFM signal with equivalent frequency-time parameters. 

2 Formulation of Research Task 

The aim of this work is to develop a current-time MM of the NLFM signal with 

a reduced MLSL of the ACF, consisting of five LFM fragments, which provides an 

improvement in the quality of detecting echo signals under conditions of non-

stationary interference background. 

3 Presentation of Research Material 

3.1 Development of a Mathematical Model of the Current Time for a Five-

Fragment NLFM Signal 

To develop the current time MM of a five-fragment NLFM signal, we use the model 

for the case of three LFM fragments with an increasing frequency law as an initial one. 

The MM of the instantaneous phase of such a signal has the form (1), and it introduces 

components to compensate for jumps in instantaneous frequency and phase at the 

joints of the LFM fragments, which ensures minimization of the MLSL of the result-

ing NLFM signal [6]: 
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where fs is the initial (starting) frequency of the NLFM signal; βi is the frequency 

modulation rate (FMR) of the corresponding i-th (i = 1, 2, ...) LFM fragment: 
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f
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=   

where Δfi is the frequency deviation of the i-th LFM fragment; Ti is the duration of the 

i-th NLFM signal fragment; δf12 is the instantaneous frequency jump at the junction of 

the first and second signal fragments [5]: 

 12 1 2 1( )f Tδ β β= −  (2) 
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δf23 – the instantaneous frequency jump at the junction of the second and third frag-

ments [6]: 

 ( ) ( )23 1 3 1 2 3 2f T Tδ β β β β= − + −  (3) 

δφ12, δφ23 – are the corresponding jumps in the instantaneous phase of the signal at the 

junctions of the fragments, obtained by integrating (2) and (3): 

 ( )2
12 1 2 1

1

2
Tδϕ β β= −  (4) 

 ( ) ( )2 2
23 1 3 1 2 3 2
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Using the approach and results presented in [6], let us write down the expressions 

for the instantaneous frequency jumps at the junctions of the third-fourth and fourth-

fifth FFT fragments. The analysis of (2) and (3) shows that the addition of each subse-

quent LFM fragment causes the appearance of a new component of the instantaneous 

frequency jump. The value of each of the components of the frequency jump is propor-

tional to the product of the difference between the FMR of the current and each of the 

previous fragments by their respective durations. Thus, for the junctions of the third-

fourth and fourth-fifth fragments, we write the following: 
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By analogy to (4), (5), we have: 
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Finally, based on (1) and considering (2)-(9), we obtain the MM of the current 

time of the NLFM signal, which consists of five LFM fragments: 
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Let us write MM (10) in a compact form: 
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To verify the validity of the theoretical results presented here, we will conduct 

a comparative analysis of the oscillograms, spectra, and ACF signals using MM (1) 

and (11) with respect to the classical LFM signal, provided that their frequency-time 

parameters are identical. 

3.2 Results of Mathematical Modeling 

The mathematical modeling was performed using the MATLAB software package. 

During the simulation, a conventional LFM signal, three- and five-fragment NLFM 

signals with the same total duration of 140 µs and a frequency deviation of 440 kHz 

were studied. To provide better visibility of the results and simplify the analysis, the 

initial frequency of the signals was set to fs = 0. 

The modeling has shown that the best values of the MLSL of five-fragment 

NLFM signals are achieved by observing certain ratios between the duration of the 

fragments and their frequency deviations. The paper presents the results obtained for 

the ratio of fragment durations of 1 : 1 : 10 : 1 : 1. For the deviation of the fragment 

frequency, the values of the FMR are decisive; in the course of modeling, the ratio of 

the FMR of fragments was used 4 : 2 : 1 : 2 : 4. 

The duration of the fragments of the studied NLFM signals was: 

•  for three fragments T1 = T3 = 20 µs, T2 = 100 µs, 

•  in the case of five fragments– T1 = T2 = T4 = T5 = 10 µs, T3 = 100 µs. 

The following parameters of ACF signals were evaluated and compared: 

•  MLSL, 

•  LSL decay rate, 

•  the width of the MP of ACF at the level of 0.707 of the maximum value. 

Based on the simulation results, Fig. 2 presents the time-domain frequency varia-

tion for three- and five-fragment NLFM signals, while Fig. 3 shows the corresponding 

signal oscillograms, Fig. 4 displays the signal spectra, and Fig. 5 illustrates their auto-

correlation functions (ACF). 

 

   
(a)                                                                     (b) 

Fig. 2 Frequency variation diagrams of three-fragment (a) and five-fragment,  

(b) NLFM signals 
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(а)                                                                   (b) 

Fig. 3 Oscillograms of three-fragment (a) and five-fragment, 

 (b) NLFM signals 

 

   
(а)                                                                     (b) 

Fig. 4 Spectrum of three-fragment (a) and five-fragment (b) NLFM signals 

  
(а)                                                                    (b) 

Fig. 5 ACF of three-fragment (a) and five-fragment (b) NLFM signals 

The frequency variation graphs of the NLFM signals in Figs 2a and 2b illustrate 

the number of LFM fragments and the corresponding changes in their slope – i.e., 

variations in the frequency modulation rate (FMR). Notably, as demonstrated in [5, 6], 

there are no frequency discontinuities at the junctions between fragments. The graphs 

are in the same time-frequency range, which indicates the identity of the correspond-

ing signal parameters. 
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From the analysis of the waveforms of Figs 3a and 3b, it can be seen that there 

are no jumps in the instantaneous frequency and phase of the signals at the junctions 

of the fragments for both MM. 

The signal spectra of Figs 4a and 4b demonstrate a clear difference: the spectrum 

of the three-fragment signal has two strongly pronounced modes on the slopes, for the 

five-fragment signal the modes are less pronounced, the spectrum has a more rounded 

shape. Both spectra have no discontinuities, dips, or pulsations, which also confirms 

the absence of jumps in both the instantaneous frequency and phase of the NLFM 

signals, unlike the results of [5, 6]. 

The shown ACFs of these signals in Figs 5a and 5b have a similar appearance, 

which also indicates the equivalence of their time-frequency parameters. In both cases, 

the nearer SLs form a pedestal near the MP, the main difference being the level of this 

pedestal relative to the MP maximum; for the five-fragment NLFM signal, this level is 

clearly lower. 

Tab. 1 shows the numerical values of the ACF parameters of the LFM and NLFM 

signals and the results of their comparison. The parentheses show the change in the 

value of the selected parameter (“+ˮ – increase, “−ˮ – decrease) relative to the LFM 

signal. 

Tab. 1 Results of comparing the parameters of ACF LFM and NLFM signals 

Parameter name LFM NLFM  

3 fragments 

NLFM  

5 fragments 

Width of ML of the ACF, [µs]   2.0     2.49 (+25 %)     2.74 (+36 %) 

MLSL, [dB] −13.47 −22.62 (−68 %) −25.45 (−89 %) 

The rate of decay of the SL, 

[dB/dec] 

  20.13 18.4 (−9 %)   13.65 (−32 %) 

 

Fig. 6 presents a graphical comparison of the signals based on the data from 

Tab. 1. The signals are compared by the width of the main lobe of the ACF and the 

value of the MLSL – these parameters are the most critical in the vast majority of 

practical applications. 
 

 

Fig. 6 Comparison of parameters LFM, three-fragment  

and five-fragment  NLFM signals 
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The analysis of the results indicates a lower value of the MLSL of both the three-

fragment and the proposed five-fragment NLFM signals compared to the known 

LFMs. The MLSL reduction of the five-fragment NLFM signal compared to the three-

fragment signal is 12.5 %, and the relative expansion of MP of the ACF in this case is 

10 %. 

A lower value of the LSL decay rate for the synthesized signal is associated with 

a significant decrease in the MLSL dB compared to the LFM signal at a time when the 

level of remote SLs changes little. 

It should be noted that in modern radar systems, the generation and processing of 

radar signals are performed by software tools. Under such conditions, when maintain-

ing equivalent time-frequency parameters, the introduction of various types of NLFM 

signals requires only changes to the software code according to the desired MM, with-

out any modifications to the hardware. 

3.3 Estimation of Degree of Influence of MLSL and Shape of ACF on Quality of 

Echo Detection Under Influence of Reflections from Earthʼs Surface 

Real reflections from local objects can occupy up to 50 % of the detection area and, as 

a rule, have an average power of 30 dB to 40 dB and a non-stationary distribution over 

space elements. For example, Fig. 7 shows photographs of the screens of a centimeter-

wavelength radar indicator obtained in a field experiment. By selecting the display 

threshold, it is possible to estimate the spatial distribution of PI that exceeds it. 

     
threshold 6 dB                                 threshold of 36 dB                                threshold 72 dB 

Fig. 7 Photos of the radar angle indicator, the indicator scale is 75 km 

Determination of the level of the PI acting in the path is provided by the PI detec-

tion channel in the radar. The threshold for detecting the PI can be set relative to the 

intrinsic noise level of the receiving path from 0 dB to 42 dB with a 6 dB resolution. 

This allows you to estimate the power of reflections from local objects and their loca-

tion. Additionally, up to a range of 6.7 km, attenuation from 10 dB to 30 dB in 5 dB 

increments can be introduced using the Time-Varied Gain (TVG) device. Thus, a max-

imum attenuation of 72 dB can be set at a range of up to 6.7 km. 

The analysis of Fig. 7 shows that, despite the flat nature of the position, the zone 

of reflections from the earth’s surface can extend up to (40-60) km, and the interfer-

ence levels in local places at short range exceed 70 dB. A closer look reveals a 

significantly pronounced discrete nature of the reflections. The interference levels in 

adjacent elements of the distinction can differ by (30-60) dB. The vast majority of 

interference has a power of (20-40) dB. 

We will assume that the random samples of processes in each of the detection el-

ements have a Rayleigh distribution of amplitude and a uniform distribution of the 
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initial phase, under which conditions the optimal detection algorithm is reduced to 

comparing the modular value of the weighted sum at the MF output with its threshold. 

As indicators of detection quality, we use the conditional probability of correct 

detection D and false alarm F. Assuming that for each kth element of the space its 

modular value of the weighting sum is calculated, for a signal with a random ampli-

tude distributed according to the Rayleigh law and a uniformly distributed initial 

phase, we will have a partial value of the conditional probability of correct detection 

(F = const) [1, 3, 4]: 

 

1
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where qk
2 is the detection parameter that determines the signal/interference + noise 

ratio in the kth element of space. For certain conditions, the detection parameter is 

equal to [1, 4]: 
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where σPI,k
2 is the power of the passive interference samples in the kth space element; 

σS
2 is the power of the useful signal samples; σN

2 is the power of the intrinsic noise 

samples (σN
2 = 1). 

For further analysis, we will obtain the average value of the probability of correct 

detection over the elements of the space. Such a problem belongs to the class of prob-

lems with parametric a priori uncertainty [13]. General approach to solving such 

problems is to use the full probability formula to move from the conditional probabil-

ity density Dk (12) to the unconditional probability density D by averaging over the 

value of the unknown parameter (13), i.e., in fact, over the distribution of the passive 

interference power value σPI,k
2. 

To move from the partial to the average value of the probability of correct detec-

tion D, it is necessary to set a distribution law that describes the statistical 

characteristics of the parameter σPI,k
2. To do this, it is convenient to use the generalized 

distribution of PI power introduced in [14] (for simplicity, σPI,k
2 = σ2): 
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where G(z) is the gamma function; m is the average value of the PI power relative to 

the intrinsic noise level, [dB]; Δ is the average power fluctuation range relative to m, 

[dB]. 

The generalized PI power distribution (14) belongs to the Family of Generalized 

Gamma Distributions and generalizes a number of unimodal laws [15-18]. The use of 

(14) makes it possible to set different levels of nonstationarity of the interfering back-

ground by changing the magnitude of power fluctuations Δ while maintaining its 

average value m. 

The final expression for calculating the average value of the probability of cor-

rect detection is as follows: 
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We will evaluate the effect of the SL ACF of the proposed MM signal (11) on the 

detection quality indicators against the background of non-stationary PI by mathemati-

cal modeling. The results will be compared with those obtained for a conventional 

LFM signal with equivalent frequency and time parameters. 

For the simulation, initial realizations of the intensity distribution of the unsteady 

PI by range elements with known parameters m = 30 dB and Δ = 3 dB, Δ = 5 dB, 

Δ = 10 dB were generated, which corresponds to most practical situations. Next, for 

the selected signal, the MF responses were summed sequentially by range elements. 

New values of the parameters m and Δ were determined for the output sequences ob-

tained in this way. Finally, for the selected false alarm value, the conditional 

probability of correct detection was calculated using formula (15). 

The results of the calculations are shown in Fig. 8. The detection curves are plot-

ted for the conditional false alarm probability F = 10−6. For comparison, two extreme 

cases are presented - no interference and the presence of a stationary interference with 

an intensity of 30 dB. Curves 1 and 2 correspond to the level of non-stationarity of the 

PI Δ = 10 dB, curves 3, 4 and 5, 6 to the levels Δ = 5 dB and Δ = 3 dB, respectively. 

The dashed curve corresponds to the proposed model of the NLFM signal (curves 

1, 3, 5), and the solid curve corresponds to the LFM signal (curves 2, 4, 6). 
 

 

Fig. 8 Detection curves for different signal models 

The analysis of the curves shows that the higher the level of nonstationarity of 

the interfering background (Δ = 10 dB, curves 1 and 2), the greater the potential gain 

in the signal-to-interference-plus-noise ratio. Physically, this is explained by the fact 

that almost all the PIs are localized in individual elements of the detection, and the 

target can be observed in the interference gaps. The process at the MF output exhibits 

strong, intermittent bursts of energy interspersed with extended periods of low power. 

Under these conditions, the shape of the ACF and the value of its MLSL have minimal 

impact. In fact, it is a matter of detecting echo signals of targets against the back-

ground of their own noise. The difference in the course of curves 1 and 2 is no more 

than 1 dB, and they are close to the case of no interference. 
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As the level of nonstationarity of the AS decreases (Δ = 5 dB, curves 3 and 4), 

the shape of the ACF and the value of its MLSL begin to have a more significant im-

pact. Physically, this is explained by the fact that the areas occupied by the RI become 

more frequent, the RI reflections from different range areas overlap, the RI level in-

creases, and the areas that were previously free of it are filled (the “stretchingˮ effect). 

The model with a lower MRBP value is expected to give a better result, with an energy 

gain of 5 dB compared to the LFM signal. 

As the nature of the interfering background approaches the stationary one 

(Δ = 3 dB, curves 3, 4), the difference in the curves decreases and amounts to 

(1.5-2.0) dB. This is due to a decrease in the number of areas with a low level of PI, 

the curves for both signal models are approaching the case of a stationary interference 

with the corresponding power level. 

Note that for all cases, the gain is more noticeable with reduced requirements for 

signal detection quality D = (0.3–0.5) and can be (6–7) dB. 

4 Conclusions  

In this paper, we first developed a current-time MM of the NLFM signal, which con-

sists of five LFM fragments. An increase in the number of fragments allows for 

a smoother change in the FMR of the signal, which provides better rounding of its 

spectrum. Due to this, the MLSL of the five-fragment NLFM signal is reduced by 

11.98 dB compared to the LFM and is −25.45 dB for the specified frequency-time 

parameters 

For the first time, we derived a relation for finding the components that compen-

sate for instantaneous frequency and phase jumps at the junctions of the third-fourth 

and fourth-fifth LFM fragments. 

Compared to the classical LFM signal, the proposed five-fragment NLFM signal 

provides an 89 % reduction in the MLSL, which is its undoubted advantage, but the 

price for this is a 36 % deterioration in range resolution. Therefore, when resolution is 

critical for practical applications, the use of such a signal necessitates a proportional 

increase in the product of frequency deviation and signal duration. 

The effectiveness of the synthesized signal in detecting airborne targets against 

the background of reflections from local objects is evaluated. Reducing the MLSL 

provides an energy gain in target detection from 1.5 dB to 5 dB, depending on the 

level of nonstationarity of the interfering background. 

The practical application of the proposed five-fragment NLFM signal will im-

prove the tactical and technical characteristics of radar means for detecting small-sized 

objects by increasing the probability of correct target detection against the background 

of non-stationary PI. 

A future study is planned to compare the three-fragment and five-fragment 

NLFM signals with other well-known NLFM waveforms under equivalent time-

frequency conditions.  
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