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Abstract:  

This paper presents a deep learning approach to detect malicious communication in 
a computer network. The intercepted communication is transformed into behavioral 
feature vectors that are reduced (using principal component analysis and stepwise selec-
tion methods) and normalized to create training and test sets. A feed-forward artificial 
neural network is then used as a classifier to determine the type of malicious communi-
cation. Three training algorithms were used to train the neural network: the Levenberg-
Marquardt algorithm, Bayesian regularization, and the scaled conjugate gradient back-
propagation algorithm. The proposed artificial neural network topology after reducing 
the size of the training and test sets achieves a correct classification probability of 
81.5 % for each type of malicious communication and of 99.6 % (and better) for normal 
communication. 
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1 Introduction 

Detection, elimination and prevention of security incidents in cyberspace is an im-
portant prerequisite for safe and effective use of information technology in globally 
connected economies [1, 2]. This work uses a trained neural network to search and 
identify attacks in cyberspace, using pre-trained and pre-intercepted data communica-
tions for its operation. 
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1.1 Problem Definition 

The paper focuses on finding malicious activity in intercepted data communications 
using a trained artificial neural network. In doing so, it involves the recognition of 
learned types of malicious activity in forward captured communication obtained from 
the CSE-CIC-IDS2018 dataset [3]. The idea behind the approach is to transform the 
coherent data exchanges between nodes in the network into behavioral feature vectors, 
which are then preprocessed and used to classify the type of attack. Due to the neces-
sary extraction of complete data exchanges between communicating network nodes 
and the necessary preprocessing, the method is intended for offline analysis, in con-
trast to approaches described in [4, 5], for example.  

The course of the experiments is as follows. From the CSE-CIC-IDS2018 dataset, 
a training set consisting of 1 800 records (200 records of normal traffic and 200 rec-
ords each of 8 attack variants) and a test set consisting of 7 200 records (800 records 
of normal traffic and up to 800 records each of 8 attack variants) were extracted. Each 
record contained 77 input parameters. For training and testing the feed-forward neural 
network, three variant sets were used (original – 77 input parameters, transformed 
using PCA – 18 input parameters, and transformed using stepwise selection method - 
23 input parameters). 

The reason for optimizing the training and testing sets is to reduce the number of 
input parameters describing the data stream and to remove noise, while we expect to 
increase the classification accuracy. 

A trained feed-forward neural network is used in the role of the classifier. For 
each variant of the normalized training and test set, the neural network is trained using 
three different algorithms (the Levenberg-Marquardt algorithm, Bayesian regulariza-
tion, and the scaled conjugate gradient backpropagation algorithm) in order to 
maximize the probability of correctly classifying malicious code and minimize mis-
classifications. 

The paper presents the results of the classification of the malicious activity and 
the optimization of the input parameters of the training set. The malicious activity 
classification results are obtained from nine experiments (3 training and test sets times 
3 training algorithms) by using an independent test set. 

2 Types of Malicious Communication 

As examples of malicious communication, we used different variants of Denial-of-
Service (DoS) and Distributed Denial-of-Service (DDoS) attacks, Brute Force attacks, 
Botnet and Infiltration. These were a total of eight attack variants, and the training and 
test sets we created included legitimate data communications that we considered to be 
secure. Each of the attacks is characterized by the type of protocols used, the intensity, 
as well as the number of attackers or victims. We validated the ability of the neural 
network to classify the different types of attacks and distinguish attacks from legiti-
mate communications on selected communication samples. 

For a better introduction to the issue of malicious communication observation 
and behavior of selected attacks (DDoS LOIC-HTTP and Infiltration), we show the 
numbers of attackers and victims, including a sample of the intercepted malicious 
communication, which is then used for the creation of training and test sets, and 
recognition using a neural network. 
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2.1 DoS Attack 

The essence of a DoS attack is that (one) attacker, by making a large number of legit-
imate requests to a selected service, in our case a web service, tries to ideally crash or 
extremely slow down the service of the selected victim. Several freely available tools 
can be used for this purpose, in our case the Slowloris Perl-based tool was used to 
crash the web server. 

2.2 DDoS LOIC-HTTP Attack 

The category of DDoS attacks is made up of three attack variants (DDoS-LOIC-HTTP, 
DDOS-LOIC-UDP and DDoS-HOIC), with the individual attacks differing in the 
target of the attack and the tool that was used for the attack. We will describe the prin-
ciple of the attack using the first variant of the DDoS attack. The DDoS LOIC-HTTP 
attack is implemented using the open-source Low Orbit Ion Cannon tool originally 
developed by Praetox Technologies as a network load testing tool and currently freely 
available on several open-source platforms [4, 5]. In this case, the attack behavior is 
well-defined and clearly distinguishable from other types of attacks. Tab. 1 shows the 
victim’s address (Address B) and the attackers’ addresses (Address A) on lines 1-10 
for the attack, and provides summary information about the amount of data transmitted 
between the attackers and their victim. Lines 11 to 14 represent an example of normal 
communication, and the difference in the characteristics of the communication is evi-
dent when comparing the data in the Packets, Bytes, and Packets A-B and Bytes A-B 
columns as well. 

Tab. 1 Addresses of the attackers and the victim and the volume of communication 
during the duration of the attack  

Line 

number 

Address A Address B Packets Bytes Packets 

A to B 

Bytes A 

to B 

Duration 

(seconds) 

1 18.216.24.42 172.31.69.25 144254 8712920 144254 8712920 10830.85 

2 18.216.200.189 172.31.69.25 145713 8803158 145713 8803158 10864.12 

3 18.218.11.51 172.31.69.25 143828 8687480 143828 8687480 10817.06 

4 18.218.55.126 172.31.69.25 145207 8770490 145207 8770490 10820.70 

5 18.218.115.60 172.31.69.25 138803 8384642 138803 8384642 10858.60 

6 18.218.229.235 172.31.69.25 146691 8862466 146691 8862466 10860.99 

7 18.219.5.43 172.31.69.25 144458 8725964 144458 8725964 10834.02 

8 18.219.9.1 172.31.69.25 147264 8897152 147264 8897152 10862.58 

9 18.219.32.43 172.31.69.25 143178 8647964 143178 8647964 10794.51 

10 52.14.136.135 172.31.69.25 145894 8812004 145894 8812004 10831.44 

11 60.191.38.77 172.31.69.25 7 735 7 735 5.99 

12 71.6.202.198 172.31.69.25 8 649 8 649 139.62 

13 79.137.70.1 172.31.69.25 2 108 2 108 0.12 

14 103.45.108.96 172.31.69.25 8 693 8 693 473.13 
 
Thus, in our case, the simulated attack is conducted from 10 devices simultane-

ously against a single victim. In a real deployment, in order to achieve the goal of 
disabling the service, it is necessary to increase the intensity of the attack, i.e., to de-
ploy an order of magnitude more attackers and increase the duration of the attack as 
well. Development versions of a tool to perform such an attack and its use are de-
scribed in reference [4]. 
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Tab. 1 describes the time, intensity and number of attackers involved in the at-
tack, which are input for later analysis and determination of the attack. For a closer 
look at one complete packet exchange between attacker and victim, see Tab. 2. This is 
a complete behavioral pattern of the selected attack consisting of 9 packets, which is 
transformed into the input vector of the test or training set using CICFlowMeter [5, 6]. 

Tab. 2 Example of communication between attacker and victim  

Protocol Source IP 
Source 

port 
Destination 

IP 
Destination 

port Attributes 
Size 

(bytes) 

TCP 18.219.9.1 64546 173.31.69.25 80 SYN 66 

TCP 173.31.69.25 80 18.219.9.1 64546 SYN,ACK 66 

TCP 18.219.9.1 64546 173.31.69.25 80 ACK 54 

TCP 18.219.9.1 64546 173.31.69.25 80 PSH,ACK 74 

TCP 173.31.69.25 80 18.219.9.1 64546 ACK 54 

TCP 173.31.69.25 80 18.219.9.1 64546 PSH,ACK 1018 

TCP 173.31.69.25 80 18.219.9.1 64546 FIN,ACK 54 

TCP 18.219.9.1 64546 173.31.69.25 80 ACK 54 

TCP 18.219.9.1 64546 173.31.69.25 80 RST,ACK 54 

2.3 Brute Force Attacks 

The essence of brute force attacks (in our case there were two variants of the attack – 
Brute Force-Web, BruteForce-FTP) is an attempt to gain access to a service by guess-
ing login credentials during the authentication phase. The attacker uses a large 
dictionary of login credentials (or generates them randomly) and repeatedly enters 
them when prompted to access the service of interest on the victim’s computer. 
A large number of tools and extensive dictionaries of stolen and frequently used cre-
dentials are available to perform such an attack; in our test suite, Patator, a multi-
threaded tool written in Python, was used for the attack to gain access with web and 
ftp services. 

2.4 Botnet 

The essence of this category of attacks is to create a network of controlled (malware-
infected) computers that perform malicious activities according to the commands of 
the controlling computer. Such compromised computers can carry out targeted mas-
sive attacks on other computers and services on the network. 

In the scenario used in the creation of the dataset, the compromised computers do 
not attack other devices; the botnet is designed to collect and periodically send screen-
shots of the compromised computers (which are part of the botnet) to the controlling 
computer, in order for the attacker to obtain information about the data processed on 
them. The Zeus and Ares tools were used to implement the botnet. 
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2.5 Infiltration Attack 

Unlike the previous attack, this is a group (of two) of activities performed to gain 
access to the (single) compromised device and then perform malicious activities that 
vary from case to case and reflect the specific interest of the attacker. The attack starts 
with the attacker attacking the vulnerable device, gaining control of it, and then anoth-
er attack is conducted from the already attacked machine. The commentary on the 
dataset used states that an attacker from within the organization has exploited a vul-
nerability in a selected application on the victim’s computer. He then used the 
Metasploit framework to create a backdoor so that he could exploit the victim’s com-
puter as a source of further attacks on the internal network. 

This attack is characterized by a primary attacker and a primary victim who then 
attacks secondary victims, with the intensity of communication between the different 
pairs (primary attacker vs. primary victim and primary victim vs. secondary victims) 
being different. For a closer look at the packet exchange part between the attacker and 
the initial victim, see Tab. 3. 

Tab. 3 Example of communication between the attacker and the initial victim  

Protocol Source IP 
Source 
port 

Destination 
IP 

Destination 
port Attributes 

Size 
(bytes) 

TCP 172.31.69.13 53445 13.58.225.34 31337 SYN 66 

TCP 13.58.225.34 31337 172.31.69.13 53445 SYN,ACK 66 

TCP 172.31.69.13 53445 13.58.225.34 31337 ACK 54 

TCP 13.58.225.34 31337 172.31.69.13 53445 PSH,ACK 58 

TCP 13.58.225.34 31337 172.31.69.13 53445 ACK 1514 

TCP 172.31.69.13 53445 13.58.225.34 31337 ACK 54 

TCP 13.58.225.34 31337 172.31.69.13 53445 ACK 1514 

TCP 13.58.225.34 31337 172.31.69.13 53445 ACK 1514 

TCP 172.31.69.13 53445 13.58.225.34 31337 ACK 54 

TCP 13.58.225.34 31337 172.31.69.13 53445 ACK 1514 
 

The LOIC-HTTP and Infiltration DDoS examples demonstrate the variety of ap-
proaches to executing attacks, while highlighting the difficulty of a one-size-fits-all 
approach for detecting them. 

3 The Use of Artificial Neural Network 

3.1 Training and Test Set Design 

In the training and test set design, we ensured that the training and test sets had a bal-
anced representation of legitimate and malicious communication samples from the 
CSE-CIC-IDS2018 dataset [3], with the number of input parameters for each approach 
varying depending on the input parameter optimization method used. The training set 
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contained 200 samples and the test set contained 800 samples for each category from 
normal traffic and recognized attacks, and the sets did not overlap with each other. The 
data were normalized before learning and recognition of the samples by the neural 
network. 

3.2 Artificial Neural Network Topology  

The most used ANN topology for the task of classification is the feed-forward neural 
network. In the next figure is presented ANN for the classification of legitimate and 
malicious communication. The ANN consists of four layers: an input layer, the first 
and the second hidden layers, and an output layer. 

Input data are represented by seventy-seven parameters (details in CSE-CIC-
IDS2018 dataset) and each parameter has been assigned one input of the ANN. The 
biggest obstacle to using the ANN is setting an appropriate number of neurons in hid-
den layers. In our case, ANNs with a number of hidden neurons from ten to fifty were 
analyzed. The result of this optimization process is the ANN with two hidden layers, 
where the first and the second layers have 20 neurons. The definition of the output 
layer depends on the specific problem to be solved by the ANN. In our scenario, the 
ANN will classify the specific threat in the communication stream. The number of 
output neurons corresponds to the number of classes of analyzed malicious communi-
cation that can be found in the data communication.  

The output values represent the following types of legitimate and malicious 
communication: “clean and safe communications”, “Bot”, “DoS attacks-
SlowHTTPTest”, “Brute Force-Web”, “DDoS attacks-LOIC-HTTP”, “Infilteration”, 
“FTP-BruteForce”, “DDOS attack-HOIC” and “DDOS attack-LOIC-UDP”. 

The structure of the designed neural network was created in the Matlab develop-
ment environment. Very good support for work with ANN can be found in Deep 
Learning Toolbox, which was also used. A pre-trained network is a possible solution 
that can be used for most deep-learning applications after adaptation to a specific 
problem. In this paper, we created and trained feed-forward neural networks from 
scratch using the trainNetwork function. The complete architecture of the neural net-
work was determined by layer parameters and training options were defined for the 
realization of the training process.   

3.3 Artificial Neural Network Training 

To correctly implement the defined task by the chosen topology of the artificial neural 
network it is necessary to select the optimal training algorithm. Since the beginning of 
the use of the ANN, many training algorithms were invented and applied [7]. In order 
to avoid the the risk that we will not achieve optimal results by choosing an inappro-
priate training algorithm, three algorithms were used for training. The same training 
and testing sets were used by all algorithms to make the results of the trained neural 
networks comparable. 

We will use three of the existing algorithms: Levenberg-Marquardt algorithm, 
Bayesian regularization, and scaled conjugate gradient backpropagation (SCGB) algo-
rithm. 

The Levenberg-Marquardt algorithm is based on iterations that find the minimum 
of a multivariate criterion function [8]. The Bayesian regularization algorithm is an 
artificial neural network training algorithm that updates the weight and bias values 
according to Levenberg-Marquardt optimization [9]. The scaled conjugate gradient 
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algorithm was invented by Moller and is based on conjugate directions [10]. Presented 
algorithms will be used to train proposed topologies of the artificial neural networks 
for detection of selected malicious communication and the results will be compared to 
select the optimal architecture. 

Although the data set used contained a sufficient number of samples, cross-
validation was used to achieve the best possible results. In cross-validation, the origi-
nal data is divided into two subsets, training and testing, and the testing metrics are 
recorded. Similarly, multiple rounds of cross-validation are performed on different 
data splits into test and training sets. The test results from all rounds are finally aver-
aged to produce a more accurate estimate of the model's predictive performance. 
Cross-validation helps reduce variability and thereby limits problems such as the over-
fitting of the neural network to the training data. 

4 Results 

The purpose of the proposed feed-forward neural network will be to detect and distin-
guish the type of malicious communication in network traffic. The size of the input 
layer of the neural network will be gradually changed according to the number of pa-
rameters under investigation, with 77 neurons for the full number of input parameters, 
18 neurons for the reduced number of parameters by using PCA method and 23 neu-
rons for the stepwise selection method. The next section will describe the methods for 
reducing the size of the datasets and the results obtained for training and pattern 
recognition with a neural network trained with three different training algorithms.  

4.1 Defining a Default State with a Complete Set of Input Parameters  

To define the initial state and compare the impact of dataset reduction on the accuracy 
of malicious data stream determination, we first used all 77 input data stream parame-
ters as input.  The neural network structure for this task is shown in Fig. 1. The input 
layer is composed of 77 input neurons, followed by two hidden layers of 20 neurons 
each, and an output layer composed of 9 neurons (one neuron for each category). 
Three algorithms were used for training: the Levenberg-Marquardt algorithm, Bayesi-
an regularization and the Backpropagation scaled conjugate gradient algorithm. The 
experiment resulted in three trained neural networks, and their success rate of correctly 
recognizing the type of malicious data stream is shown in Fig. 2. 

The selected training algorithms achieved approximately the same correct classi-
fication rate of 89.2 % to 91.2 % in learning the type of malicious code.  The learning 
was followed by the testing stage, where we used an independent test set of data com-
munication samples. Neural networks trained with the scaled conjugate gradient 
backpropagation algorithm and the Levenberg-Marquardt algorithm achieved correct 
classification probabilities of 81.4 % and 81.9 %, respectively. The neural network 
trained by the Bayesian regularization algorithm achieved unsatisfactory results at 
31.1 %, although this algorithm was the best at recognizing the training set. The best 
results in the classification of the test set were achieved using the Levenberg-
Marquardt algorithm 81.9 %. But this number does not reflect the results in the classi-
fication of individual types of malicious communication.  

A very good way of visualization is the confusion matrix (Fig. 3). In the first row 
of the confusion matrix, we can see the ANN results for the clean and safe communi-
cations classification, where 100 percent success was achieved. 
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The second row represents “Bot” communication. All 800 samples of this type of 
attack were classified correctly but 5 were classified incorrectly. Four of them be-
longed to the class “Brute Force-Web” and one to the class “DDOS attack-LOIC-
UDP” malicious communications. 

Malicious communications of the type “DoS attacks-SlowHTTPTest” are shown 
in the third row. Only 251 samples from the test set were classified as an attack of this 
type. The similarity of this type of attack with the “FTP-BruteForce” type is amplified 
by the classification error, which is shown in the 7th row of the matrix. An attack clas-
sified as “FTP-BruteForce” was actually “DoS attacks-SlowHTTPTest” in 549 cases. 
In three cases, the samples were classified as “DoS attacks-SlowHTTPTest” although 
it was 1 sample “Brute Force-Web” and 2 samples “FTP-BruteForce”. 

 

Fig. 1 Topology of feed-forward ANN 

 

Fig. 2 Feed-forward neural network results for the full set of input parameters 
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Fig. 3 Confusion matrix for a testing set for the full set of input parameters 

“BruteForce-Web” malicious communications are shown in the 4th row. 498 
samples from the test set were classified as an attack of this type, while 153 samples 
were actually malicious communications type “DDOS attack-LOIC-UDP”. The simi-
larity of this type of attack with the “DDOS attack-LOIC-UDP” type is amplified by 
the classification error, which is shown in the 9th row of the matrix. An attack classi-
fied as “DDOS attack-LOIC-UDP” was actually “BruteForce-Web” in 189 cases. In 
92 cases the samples were classified as “DDOS attack-LOIC-HTTP” although they 
were samples of “Brute Force-Web”. 

All 800 samples of “DDOS attack-LOIC-HTTP” were classified correctly (5th 
row of the table). In addition, 92 (“BruteForce-Web”) and 30 (“DDOS attack-LOIC-
UDP”) samples were incorrectly identified as this type of malicious communications.  
Forty samples of “Infiltration” were identified correctly. The rest of the samples were 
classified as “DDOS attack-HOIC” (29 samples) and “DDOS attack-LOIC-UDP” (92 
samples). In the same way, we can analyze the results for all types of malicious com-
munications. 

4.2 Reduction of Input Parameters Using PCA  

Real applications can involve hundreds or even many more measurable factors which 
must be considered during the learning process. The number of parameters affects the 
time of the training process and can influence the probability of finding a reasonable 
solution. Nevertheless, it is frequently feasible to decrease the number of features with 
the goal of reducing computational complexity. The loss of information and possibly 
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lower system performance is the main disadvantage of dimensionality reduction, even 
though the learning process is realized faster. If we realize the training of the proposed 
artificial neural network with the full set of parameters before the dimensionality re-
duction of the training data, we can analyze the influence of the decreased number of 
parameters. The reduction of parameters very often presumes to remove some noise 
and redundant data. Based on our experiences, we expect a better efficiency of the 
proposed system for network attack identification. Another advantage of decreasing 
dimensionality in addition to learning acceleration is a better data visualization. The 
number of dimensions from two to five is the best from the human point of view. Two 
or three dimensions are the best to draw or plot on a graph and discover some im-
portant observations thanks to visual perception. 

There are several methods to solve the dimensionality reduction problem. Exam-
ples of feasible methods are principal component analysis [11], factor analysis [12], 
and others. For our task of malware identification, we will use principal component 
analysis.  

Principal component analysis (PCA) is an ordinal method that allows reducing 
the number of dimensions in the Euclidean space (defined by correlated variables) 
so that no information is lost. The number of original mutually correlated (observed) 
variables is replaced by the new number of mutually uncorrelated (orthogonal) un-
measurable “synthetic” variables so that the first new coordinate axis (the first 
principal component) is directed in the direction of maximum variability between 
objects. The second axis (the second principal component) is perpendicular to the 
first axis and is guided in the direction of the second largest variability between 
objects, etc. 

The relative position of objects in the original space and in the new space (given 
by principal components) is the same. The original coordinate system is rotated in the 
direction of max. variability between objects, while the Euclidean distances between 
objects are preserved. 

Fig. 4 presents the value of variability for a given principal component.  The first 
main component has the highest value – approximately 36 % of the total data variabil-
ity and therefore this component can be taken as the most significant. The value for the 
second principal component is approximately 21 % and for the third principal compo-
nent 12 %. The fourth principal component has a variability close to 11 % and the fifth 
principal component has close to 7 % of the total variability. The sixth and seventh 
principal components have a value of variability above 2 %. From the eighth compo-
nent, the value of variability is going close to 1 % or less. 

Fig. 5 shows the value of cumulative variability for a given principal component. 
To achieve a cumulative variability over 90 %, we need to use 7 principal components. 

If we use 11 principal components, we achieve a cumulative variability of 95 % 
percent. The value of cumulative variability changes to 99 % for 18 principal compo-
nents. We can continue to increase the number of principal components, but the 
increase in the value of cumulative variability will be imperceptible. 

To determine the optimal number of principal components, we have several 
methods. The most frequently used method, the Kaiser-Gutmann criterion, is based on 
all principal components whose variability is greater than 1 %. In our application, we 
set a border to the total variability in the data to 99 %. It means that we need to use the 
first 18 principal components. 
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Fig. 4 The variability for the given 
principal component in % from the 

total data variability 

Fig. 5 The cumulative variability for 
the given principal component 

 
The use of the PCA method ensured the reduction of the initial 77 input parame-

ters to the final 18 new independent variables, which are classified by a trained feed-
forward neural network (Fig. 1). The structure of the neural network is as follows: 18 
input neurons, 20 neurons each in the two hidden layers and 9 output layer neurons. 
The training of the neural network defined in this way was carried out by 3 algorithms: 
the Levenberg-Marquardt algorithm, Bayesian regularization and the scaled conjugate 
gradient backpropagation algorithm. The training of the neural network was stopped at 
the moment of the optimal learning point for the corresponding algorithm so as to 
avoid overfitting the training dataset and having poor performance on the test set. 
During the training phase, each algorithm achieved a correct classification rate ranging 
from 88.2 % to 91.7 % (Fig. 6). This was followed by testing the trained neural net-
works with the prepared test set. The trained neural networks were tested with the 
prepared test set in the next step. The neural networks trained with Bayesian regulari-
zation algorithm and Levenberg-Marquardt algorithm obtained the probability of 
correct classification at 64 % and 72.4 %, respectively. The best results were obtained 
with the neural network trained by the scaled backpropagation conjugate gradient 
algorithm with 81.4 %. 

 

Fig. 6 Feed-forward neural network results for PCA variable selection 
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More detailed results for testing the classification using ANN with reduction of 
the input parameters by PCA are displayed in the confusion matrix (Fig. 7). The best 
results were achieved for “Clean and safe comms”, “Bot” and “DDOS attack-HOIC”. 
Other types of malicious communications have similar results (with minor differences 
for specific cases) as in the previous variant with a complete set of input parameters 
(Fig. 3). 

 

Fig. 7 Confusion matrix for a testing set for the PCA reduction of input parameters 

4.3 Reduction of Input Parameters Using the Stepwise Selection Method 

The stepwise selection method is used to construct a linear model of the training and 
test set by using stepwise regression to add or remove predictors to or from the con-
stant models, while requiring knowledge of the system response to the variable. While 
it is true that larger models have less error in determining the output variable, on the 
other hand, their prediction ability is reduced [13-15]. 

Experiments aimed at identifying malicious communication were conducted us-
ing our independent training and testing datasets extracted from CSE-CIC-IDS2018 
[16], while the characteristics and possible use of the original set are described in 
[17-19]. From the original set of captured communication, we extracted attack and 
normal communication patterns using Security Onion 2.3 [20-22] which were then 
transformed using CICFlowMeter [5, 6], then normalized and ingested into the train-
ing and test sets. The sets included normal communication and Botnet attacks, DoS 
attacks-SlowHTTPTest, Brute Force-Web, DDoS attacks-LOIC-http, Infiltration, FTP-
BruteForce, DDOS attack-HOIC, and DDOS attack-LOIC-UDP. 



Advances in Military Technology, 2023, vol. 18, no. 1, pp. 101-117 113

The model created is represented by a function: 

 Max Max Mean MinLabel ~ 1  FwdIAT BwdIAT PktLen FwdSegSize+ + + + +⋯  (1) 

where Label is the estimated attack type, followed by a list of 23 predictors. The origi-
nal output from the CICFlowMeter contained data flows of size 83 variables and 
a label indicating the flow’s affiliation with the attack or normal operation – Label. 
Irrelevant variables (Timestamp, FlowID, SrcIP, DstIP ...) were removed from the 
output and the remaining part (consisting of 77 input parameters) of the data stream 
was used as input to build a linear model using a stepwise selection method.  

The obtained predictors allowed reducing the sizes of the training and test sets 
and, after normalization, were used to train the neural network to recognize the at-
tacks. Fig. 8 shows the estimated effects of changes in the selected predictors on the 
output value (Label variable) in the linear regression model, with the horizontal line 
through the effect value indicating the 95 % confidence interval for the effect value. 

Fig. 8 Effects of selected predictors in the stepwise selection method 

This time the neural network (Fig. 1) had 23 input neurons, the number of neu-
rons in the hidden layers and the output layer remained unchanged. For training using 
the reduced training set, the same training algorithms were used as in the previous 
cases. The malicious communication recognition results for the training and test sets 
are shown in Fig. 9. The Bayesian regularization and Levenberg-Marquardt algorithms 
achieved 91 % and 90 % correct malicious communication type identification success 
rates in training, and the SCGB algorithm achieved 87.6 %. 

The results of malicious communication recognition from the test set show that 
the best results were achieved by Levenberg-Marquardt algorithm – 81.5 % followed 
by Bayesian regularization – 80.4 % and SCGB algorithm – 78.8 %. All three algo-
rithms achieved very reasonable results during neural network training (probability of 
correct classification: 91 %, 87 % and 90 %). The trained neural networks were tested 
with the test set in the next step, and all three algorithms achieved balanced results of 
correct classification of each type of attack at a level of just around 80 %. 
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Fig. 9 Feed-forward neural network results for the stepwise selection method 

More detailed results for testing the classification using ANN with reduction of 
the input parameters by the stepwise selection method are displayed in the confusion 
matrix (Fig. 10). The best results were again achieved for classification of “Clean and 
safe communications”, “Bot” and “DDOS attack-HOIC”. Other types of malicious 
communications have similar results (with minor differences for specific cases) as in 
the previous variant with a complete set of input parameters (Figs 3 and 7). The simi-
larity according to the legend of the Fig. 10 can be identified in pairs of attacks type 3 
and 7, 4 and 9, 4 and 5, 5 and 9, 6 and 9, where errors occurred in the classification of 
malicious communications.  

 

Fig. 10 Confusion matrix for a testing set for the stepwise selection method 
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5 Conclusions 

In the present paper, we have analyzed the possibility of detecting selected types of 
malicious communication using behavioral feature vectors and artificial neural net-
works. The size of behavioral feature vectors was reduced by PCA and stepwise 
selection method. The reduced behavioral feature vectors were used to form a separate 
training and testing set and three different training algorithms were used to train the 
artificial neural network: the Levenberg-Marquardt algorithm, Bayesian regularization 
and the scaled conjugate gradient backpropagation algorithm. If we decrease the num-
ber of input parameters from 77 to a smaller number (18 for PCA and 23 for stepwise 
selection method), we do not significantly change the probability of correct classifica-
tion of malicious communications. But the decreased number of input parameters 
allows us to create hardware implementation of the neural network with simplified 
architecture, which can be retrained faster. In the summarizing Tab. 4, results of all 
analyzed scenarios in the training and testing phase are presented. 

The achieved results have clearly confirmed the similarity between the samples 
of the given dataset of individual types of malicious communications, which did not 
allow to achieve better results than stated in 4th part. What is more important, the pro-
posed artificial neural network topology achieves a correct classification probability 
100 % in two scenarios and 99.6 % in one scenario for normal communication (confu-
sion matrices Figs 3, 7 and 9). Based on these results, we can distinguish normal and 
malicious communications almost without error. The proposed artificial neural net-
work can be used not only in offline analysis, but also in almost real-time after 
preprocessing of input data streams. Smaller ANN can be also retrained faster in this 
way of use.  

Tab. 4 Comparison of results of analyzed methods 

Scenario Training algorithm Training set Test set 

Full set of 
input parame-
ters 

Bayesian regularization 91.2 31.1 

SCGB algorithm 89.2 81.4 

Levenberg–Marquardt algorithm 90.1 81.9 

PCA 

Bayesian regularization 91.7 64.0 

SCGB algorithm 88.2 81.4 

Levenberg–Marquardt algorithm 90.2 72.4 

Stepwise selec-
tion method 

Bayesian regularization 91.0 80.4 

SCGB algorithm 87.6 78.8 

Levenberg–Marquardt algorithm 90.0 81.5 
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