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Abstract:  

Non-professional weather stations are often omitted from the networks of stand-

ard/professional stations at various spatial scales. Nevertheless, there are many tasks 

when such non-professional datasets can serve as the only or the most relevant available 

source respectively. Its acquisition costs, sufficient quality and capacity together with its 

moveability represent properties that should be taken into consideration when planning 

operational usage of various meteorological data. In this paper, we focus on the datasets 

of air temperatures and relative humidities measured both with professional and non-

professional devices at nearly the same location. Four years of almost continual meas-

urements (2016-2019) ensure robust sample of mutual comparison, which we analyze in 

the paper more in detail in order to assess the potential of non-professional datasets for 

utilization in aviation meteorology. Particular issues such as value difference patterns, 

large errors occurrence, temporal signal stability and seasonality are elaborated as 

well. 
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1 Introduction 

Non-professional weather stations can be a useful source of information for a variety 

of common tasks. The network of professional stations is often either not dense 

enough in many areas of the world, or the spatial distribution of stations can be 

inhomogenous and, moreover, their accuracy for many tasks is therefore rather ques-

tionable. Although this topic has been already researched by international scientific 

groups, e.g. [1, 2], comparison of two simultaneously measuring stations on one loca-

tion is not commonly applied [3]. Researchers usually assess more than two weather 
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stations, i.e., when evaluating overall potential and/or limits of crowdsourcing as in 

the case of some urban areas [4, 5].  

Weather monitoring is not only the domain of civilian services and institutions 

but also of military ones. Such interest was accelerated after the Second World War 

[6]. From the current point of view, military weather stations should among others 

often meet the requirement of an enhanced device mobility, which led to the develop-

ment of so-called field or tactical weather stations (e.g., TACMET [7]). Higher 

mobility of non-professional stations can serve as a deciding factor when planning 

military training and operations. 

The aim of this paper is (1) to discover the most commonly occurring errors in air 

temperature and relative humidity measurements of non-professional stations and (2) 

to identify their source in order to attempt proposing a workable procedure for explor-

atory analysis. Subsequently, elimination of these errors will take place. An error will 

be defined as the difference of the measurement insufficient for aviation purposes [8]. 

Based on the previous studies [3, 4], there is a large portion of shared variability par-

ticularly in terms of air temperature reference and tested datasets. However, the 

remaining unexplained variability has not been analyzed yet. Similarly, relative hu-

midity was not investigated at all either. The significance of this topic lies in the drive 

to attain optimal data cleaning. The identification of questionable values is a widely 

discussed subject and serves as the basis for the development of more advanced meth-

odologies, particularly in the field of machine learning [9]. Indeed, the next research 

goal will be to replace measurements during outages or to automatically detect outli-

ers. 

2 Data and Methods 

 An ideal opportunity for testing is to utilize data from two parallel measurements at 

the same location and to determine the most common errors in the tested measurement 

compared to the reference measurement. For this purpose, data from the DAVIS and 

METEOS6 stations covering the period of 1st JAN 2016-31st DEC 2019 were analyzed 

and their parameters are shown in Tab. 1. Both stations are located in the military 

quarters area of Černá Pole in Brno, Czechia. Despite the fact that both stations are 

able to measure several parameters [3], we focused only on the values of air tempera-

ture and relative humidity.   

Tab. 1 Basic information about measuring stations [1] 

Station Role Index Time step Exposition Obstacles Tested values 

METEOS6 reference _x 10’ 330-30 yes T, RH 

DAVIS tested _y 5’ 330-30 yes T, RH 
 

While performing the analysis, it must be remembered that conditions in practice 

will often not be ideal for operational use. Despite this, it will be necessary to investi-

gate the quality of the dataset and measurements to determine its usability 

independently from initial and background conditions (exposition, obstacles, location, 

weather conditions…) [10]. 

The very first step to introduce the problem is an automated description of the 

basic parameters of both datasets (Tab. 2). The average values of the air temperature 

and relative humidity differences are relatively low, but both the maximum (5.0 °C for 

T, 33.9 % for RH respectively) and minimum (−6.4 °C for T, −81.1 % for RH respec-
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tively) differences are beyond acceptance for military applications (meteorological 

support – as 0.5 °C according to [8], 5 % for relative humidity as 75 % percentile of 

values, as shown in Tab. 2).  

At first sight, the very low average error should be appreciated. However, look-

ing at the extremes, the challenge is to map these extremes and discover their causes. 

The low average error of air temperature values suggests that they will not be of sys-

tematic origin but there will be exceptional situations of rare occurrence. In general, 

relative humidity values seem to have higher variability than air temperature values 

and as we can see in the Tab. 2, the tested station tends to overestimate relative humid-

ity values.  

Tab. 2 Basic statistical description of datasets (x index - reference, y - examined,  

Δ - difference): standard deviation, 25 and 75 percentiles,  

50 percentiles standing for median 

Index T_x  

[°C] 

RH_x 

[%] 

T_y 

[°C] 

RH_y 

[%] 

ΔT 

[°C] 

ΔRH 

[%] 

Abs(ΔT) 

[°C] 

Abs(ΔRH) 

[%] 

Mean 10.4   69.8 10.5 72.7 −0.1   −2.9 0.2   3.5 

Std   9.2   18.2   9.1 16.8   0.3     3.0 0.2   2.3 

Min –15.0     0.0  –14.6 18.0 −6.4 −81.1 0.0   0.0 

25 %   3.0   56.4   3.2 61.0 −0.2   −4.8 0.1   1.7 

50 %   9.8   72.2   9.9 77.0 −0.1   −3.0 0.2   3.2 

75 % 17.4   85.0 17.5 87.0   0.0   −1.0 0.3   4.9 

Max 35.8 100.0 36.9 99.0   5.0   33.9 6.4 81.1 
 

In order to study the datasets, following questions were set out in relation to the 

measured dataset overview: 

• At what air temperatures and relative humidities do the largest differences occur? 

• Does the magnitude of the difference depend on the trend from previous meas-

urements? I.e. when a variable rises/declines rapidly – do the sensors respond 

the same way? 

• Both temperature and relative humidity do not markedly differ on average – can 

any timely (daily, monthly) pattern be found at the extremes of the difference in 

measured air temperature and relative humidity values?  

• Are there any major differences from previous findings available solely for air 

temperature datasets during shorter time period [3]? 

3 Results 

First of all, overall datasets characteristics, number of observations and missing values 

of air temperature and relative humidity measurements are outlined in the following 

table (Tab. 3). The proportion of outages is slightly higher for air temperature at both 

stations. Technical issues or maintenance of the sensors according to regular calibra-

tion procedures can cause these. 

The course of the differences can be seen in Fig. 1. At a very least, it will give us an 

overall view of the dataset and help us define the main questions for analysis. We 

could – although prematurely – infer the effect of seasonality there. 
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Tab. 3 Total number of observations by reference and tested stations and their outages 

(reference – METEOS6. tested – DAVIS) 

 Max  

terms 

Measured/ 

Outage T 

Measured / 

Outage RH 

Unmeas-

ured [%] 

Outage T 

[%] 

Outage RH 

[%] 

METEOS6 210 384 197 917 / 

 5 607  

197 916 / 

 5 608 

3.2 2.8 2.8 

DAVIS 420 768 314 567 / 

 9 500 

315 667 / 

 8 400 

22.9 3.0 2.6 

 

 

 

Fig. 1 Measured air temperature difference (left) and relative humidity difference 

(right) with obvious measurement outages and extreme values;  

differences are counted as reference – tested values 

According to Fig. 1 and Tab. 3, we can confirm that the sensors were experienc-

ing outages, which in itself is a negative indicator of the quality of the measurement. 

On the other hand, there are also large fluctuations in the differences in measured 

temperatures, which could seem to indicate some seasonality issues or serious interfer-

ence from non-systematic factors.  

Fig. 2 shows not only the structure of the datasets with typical frequency distribu-

tion for air temperature and relative humidity, but also corresponding absolute 

differences. The absolute error (difference) distribution (last two graphs) shows that 

the tested one is a very accurate measurement and most of the errors are within an 

acceptable (concerning 0.5 °C and 5 % difference) range of values. 

The distribution indicates that these are more likely to be isolated errors that 

would need to be diagnosed. Furthermore, when considering the distribution of rela-

tive humidity differences with the same number of bins, an apparent inconsistency is 

observed, potentially attributed to variations in rounding. It is important to note that 

the measurement step of the test station is 1 % RH, and this factor should be duly 

considered when analyzing the data. Thus, rounding characteristic distribution was 

also examined (Fig. 3). 
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Fig. 2 Basic exploratory analysis of distribution of air temperature (reference – left, 

examined – right), relative humidity and absolute difference values  

of temperature and relative humidity 

 

 

Fig. 3 Distribution of decimals occurrence by measured air temperatures  

on reference station (left), and tested one (right) 

As far as temperature rounding is concerned, the differences at the reference sta-

tion are not very high. However, for the tested one it is clear that the values 0.0 °C and 

0.5 °C are under-represented. Although this finding may not directly affect user re-

quirements, it still can be indicative of a different approach to processing 

measurement, as it can contribute to the differences in measured values. Interestingly, 

under-represented values of 0.0 °C and 0.5 °C are not compensated for by increased 

frequency in neighboring values as expected. The highest frequency fits the 0.3 °C and 

0.8 °C decimal values. A similar result for the reference station (Fig. 4) can be derived 
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from rounding the relative humidity. For operational purposes, rounding has no conse-

quence, but it does indicate some difference between manners of creating two 

examined datasets. 

 

 

Fig. 4 Distribution of decimals occurrence by measured relative humidities on refer-

ence station. Tested station utilizes whole percent units of relative humidity. 

The following graphs (Fig. 5) were created to identify the issues and overview 

the general pattern of measurement errors. These show the overall pattern of tempera-

ture and measurement differences from four random fractions of the measured time 

series. 

 

Fig. 5 Random cuts of air temperature profile (orange) and corresponding difference 

(blue) of measured air temperature in random 20 hours intervals (dates in the lower 

left corner); differences are counted as reference – tested values 
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Fig. 5 illustrates that the sensor might react less successfully (afterwards) to situ-

ations where the temperature changed suddenly compared to the assumptions from the 

diurnal cycle. In ordinary situations (such as shown in section 1 in Fig. 5), when the 

temperature changes continuously, the error oscillates only among very low values. 

The section 1 shows typical diurnal cycle with one peak of maximum temperature with 

no unexpected break. Section 2 corresponds to a rapid late winter temperature rise, 

where the curve is slightly flattened at the time of maximum temperature and thus 

does not reach the possible predicted maximum temperatures. Thus, the period of 

sharp air temperature rise is prone to larger differences. The other two sections proba-

bly indicate the effect of cloud cover or radiation reaching the two sensors. When 

clouds suddenly dissipate or form, the daily temperature course is disturbed and con-

sequently, a certain break in the curve is created, which is not only clearly visible, but 

it also causes a higher error value. Similar effect can be attributed to highly variable 

pattern of object’s shading (buildings, trees etc.) during sunny days mostly in summer. 

Although the horizontal distance between sensors is in such cases relatively low, it can 

result in higher differences. In all cases depicted, the difference was still within a very 

small range. However, its trend shows how the sensor reacts to the change. 

In order to make an initial description complete, Pearson’s correlation coeffi-

cients were calculated for measured elements (Tab. 4).  

Tab. 4 Correlation of measured elements (x index – reference, y index– tested) 

 T_x RH_x T_y RH_y 

T_x   1.00 −0.59 1.00 −0.62 

RH_x −0.59   1.00 −0.57   0.99 

T_y   1.00 −0.57   1.00 −0.62 

RH_y −0.62   0.99 −0.62   1.00 
 

It is obvious that the elements are perfectly correlated with each other on the 

main diagonal. Indicating high accuracy of the dataset, both temperature and relative 

humidity values show very high correlation coefficients on both sensors with higher 

values for air temperature cases. It can be claimed that in this basic exploratory analy-

sis, datasets look remarkably similar. Therefore, extreme values of errors will be 

examined. 

3.1 At What Air Temperatures and Relative Humidities Do the Largest Errors Occur? 

From the initial distribution plots, we cannot determine exactly where the differences 

in the measured values stem from. In this context, error categories have been created. 

Differences of 0.5 °C and above, which are considered significant in aviation meteor-

ology [8], have been defined as high errors. 

The difference in measured air temperatures (both the maximum values and their 

seasonality) could be anticipated. This might lead to the idea that the higher deviations 

are at high or low temperatures, i.e. in summer or winter. 

Comparison of the histograms (Fig. 6) shows that the errors are in general slight-

ly more concentrated at higher measured temperatures (20 °C and more) and 

disproportion emerges when values dropped under approximately −5 °C. The producer 

of tested station states that the measurement error increases at temperatures below 

−7 °C. In particular, the curve quite smoothly follows the distribution of all tempera-
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tures, suggesting that the tested sensor operates reliably in the range of the most com-

mon air temperature values.  

 

Fig. 6 Histogram comparison of air temperature distribution at high values  

of absolute T difference (> 0.5 °C, blue) and distribution of all measured reference air 

temperatures (orange) 

Generally, inspecting a difference curve of air temperature, it can be claimed that 

the distribution follows the distribution of all measured air temperatures with a slight 

shift towards higher air temperatures. Therefore, let us inspect the correlation matrix 

of measured values and calculated features dataset in Tab. 5. 

Tab. 5 Correlation coefficient of measured values and calculated features  
 

ΔT Abs(ΔT) ΔRH Abs(ΔRH) 

T_x   0.17   0.01   0.03 −0.12 

RH_x −0.05 −0.07   0.53 −0.38 

T_y   0.14   0.02   0.04 −0.13 

RH_y   0.01 −0.10   0.39 −0.27 

ΔT   1.00 −0.31 −0.37   0.21 

Abs(ΔT) −0.31   1.00   0.09   0.13 

ΔRH −0.37   0.09   1.00 −0.78 

Abs(ΔRH)   0.21   0.13 −0.78   1.00 
 

It can be concluded from Tab. 5, in the case of temperature measurement error, 

there is no significant value of Pearson correlation coefficient, which does not help to 

draw the conclusion suggested by the previous histogram. On the other hand, the ten-

dency of larger differences at higher air temperatures fit for both stations. The higher 

values of the coefficients in case of the relative humidity differences (more pro-

nounced for reference station METEOS6) and corresponding station values give 

further scope for visualizing the relationship between the two variables.  

Firstly, the distribution of the high errors (absolute difference greater than 5 %) 

was compared with the distribution of all relative humidity measurements (Fig. 7).  



Advances in Military Technology, 2023, vol. 18, no. 2, pp. 275-289 283

 

Fig. 7 Histogram comparison of high difference distribution (blue), and all measured 

values of relative humidity (orange) 

However, the value of the correlation coefficient between the measured humidi-

ties and the RH measurement difference may be of significant importance. It can be 

anticipated that there is a possibility that at higher relative humidities (especially at the 

reference sensor METEOS6) there is a higher measurement error. The graph below 

(Fig. 8) shows the known value of the correlation coefficient (r = 0.53). The measure-

ment difference increases with increasing relative humidity values, while the absolute 

value decreases slightly (r = −0.38). Above the value of approximately 90 %, the val-

ues are very similar. It can be concluded that the magnitude of the relative humidity 

difference is dependent on the measured relative humidity. At higher values, the tested 

sensor measures generally lower values, and it happens very often. This follows from 

the fact that the values of absolute difference and ordinary difference are identical. 

Hence, there are few negative values. Conversely, at lower relative humidities, nega-

tive values are more frequent, i.e. the tested sensor tends to measure rather higher 

values. Such pattern has also resulted in lower overall variability of relative humidity 

measurements at tested DAVIS station (see Tab. 2).  

3.2 Does the Magnitude of the Error Depend on the Trend from Previous Meas-

urements?  

It can be assumed that high error values can occur after sudden changes in temperature 

or relative humidity. Examples of such situations are atmospheric front passing or 

sudden cloud formation or dissolution, etc. These usually led to significant changes of 

the normal daily radiation pattern. 

In order to compare the measurement errors and their dependence on previous 

values, the values of the changes in the last 1-5 measurements (10-50 minutes) were 

calculated. The correlation coefficients with the individual changes (autocorrelation) 

in the last 1-9 measurements are shown in Fig. 9. 
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Fig. 8 Dependence of simple (orange) and absolute (blue) relative humidity  

differences on relative humidity measured by a reference sensor 

 

Fig. 9 Autocorrelation of air temperature (left) and relative humidity (right) change in 

N recent measurements and corresponding differences (absolute difference – blue, 

simple difference – orange) 

Figure 9 reveals that in the case of air temperature, the difference in the first pre-

vious measured value (correlation 0.51) determines the value of the error the most. 

Thereafter, for the following values the correlation coefficient drops lower. For the 

absolute value (in blue on the graph), the value of the coefficient is insignificant for 
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this dataset. In case of relative humidity (right), this is more a case of an earlier meas-

urement, but here with lower correlation values (app. 0.30) without obvious trend.   

In order to find potential connection between changes in last hour, rolling mean 

of air temperature was calculated and compared with the absolute difference (Fig. 10). 

 

Fig. 10 Rolling mean of five previous measurements dependence  

on absolute temperature difference (trend shown in red) 

According to the values shown, it can be said that in general, higher values of er-

ror (the higher the error, the further to the right) are concentrated above the mean at 

higher values of the rolling mean. However, this finding cannot be used in an absolute 

way because of a few values that could be confidently called outliers. In fact, there 

have been cases where air temperature jumped by 4 °C but the error in the measure-

ment was minimal (upper left corner of the Fig. 10). 

Since no indication has yet been found that a clear relationship can be found be-

tween the magnitude of the error and the directly measured values, let us look at the 

relationship of the error on the graph. It could show seasonality or some other pattern 

of error propagation. The difference does increase in bumps around 3-5 (Fig. 11), but 

no pattern can be found. One must also consider the fact that the waveform is strongly 

influenced by a small number of measured errors in the higher range (value of absolute 

difference 0.7 °C is within the 0.98 quantile). 

As there were only unclear signs of connections between differences and other 

values, other major feature of time series should be inspected. Analysis of time 

characteristics of an error can lead to discovery of seasonal patterns in measurements 

differences. 

3.3 Can There Be Found Any Timely (Daily, Monthly) Pattern at the Extremes of 

the Difference in Measured Air Temperatures and Relative Humidities?  

From the previous analysis it is evident that there is some accumulation of biases 

in both air temperature and relative humidity, but only around a certain interval of 

values. However, it has not been established on what this value depends, thus it is 
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appropriate to try to investigate the time course of the differences in the measured 

quantities. 
 

 

Fig. 11 Dependence of air temperature change in the last hour and absolute difference 

(right on x axis the greatest value of difference) 

Since the main cycles of air temperature are diurnal and annual, we shall concen-

trate on these. 

The diurnal cycle of the air temperature error (Fig. 12) shows a clear two-peak 

course, which is concentrated in the period (1) around sunrise in the mornings and (2) 

during maximum air temperatures in the afternoons. Unfortunately, this overall graph 

smooths the patterns of individual months, which are presented further. 

 

Fig. 12 Mean diurnal (UTC time) cycle of the absolute difference of air temperature  

Monthly comparison of diurnal cycle (Fig. 13) of the difference magnitude con-

firm the above-mentioned with few exceptions. The two-peak course is obviously 

prominent by two months – May and June, followed by July. By other months, the bias 

cycle is not that remarkable. Moreover, individual months differ in timing of the larg-

est daily differences. This confirms hypothesis that main bias can be caused by 
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different conditions initiated by location of sensors, although mutual horizontal dis-

tance is only a few meters. 

 

Fig. 13 Diurnal cycle of absolute air temperature differences by month 

Since a simple difference of air temperature did not present any odds by months, 

it is not displayed. Next figure (Fig. 14) shows diurnal cycle of absolute relative hu-

midity differences. It can be stated that the magnitude of error is generally greater in 

winter, but the course of value is very similar by all of the months. Thus, the statement 

that the month of the year has a negligible effect on relative humidity appears to be 

correct. The course of simple difference is basically reversed chart of the magnitude, 

with the lowest differences about 10 h as low as −6 % RH and highest in 0-5 h, as high 

as 0 % in September. As simple difference is usually lower, it also confirms the previ-

ously concluded observation that the tested sensor measures rather higher relative 

humidity values. 

 

Fig. 14 Diurnal cycle of absolute relative humidity differences by month 

4 Discussion and Conclusion 

The aim of the research was to find out whether a non-professional station, whose 

measurements are continuously recorded, can be used for densification of the station 

network or for operational use for various tasks.  

The results showed that the measurements can meet even the strict standards re-

quired in aviation meteorology. The trend analyses of previous measurements and 

daily runs performed lead to major research outputs: 

• the tested weather station itself measures relatively reliably, 
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• the dataset is very accurate and significant errors occur only in approximately 

0.1-0.2 % of the measurements, 

• in case of large inaccuracies, the ambient values can be manually checked, as 

high error values are often isolated within the time series (as shown in Fig. 15). 

Algorithms and methods to find outliers could be designed later specifically for 

the DAVIS instrument. In addition, possible outages in measurements should be 

noticed, 

 

Fig. 15 Time series of humidity measurements with greatest error 

• the location of the station seems to have the greatest influence, due to which 

temporally systematic errors in temperature measurements have been regis-

tered, 

• in the case of relative humidity, the sensor measures reliably even at high val-

ues, close to saturation, which promises a possible application in meteorology, 

• unfortunately, in the case of temperature measurements, we register a higher er-

ror increase around 0 °C, which can be a concern for many applications where 

this value is critical, 

• for practical use, a suitable radiation shield must be used and the standard 

guidelines (e.g. WMO [10]) for the placement of weather stations must be fol-

lowed, and it can be used for routine measurements, taking into account the 

limits given by the manufacturer. 

Regarding previous study covering shorter time and slightly different meteoro-

logical elements [3] we agree on the overestimation of measured air temperatures at 

the tested station DAVIS. Nevertheless, in our study, the overall variability in air tem-

perature was slightly higher (r = 1.00) compared to the previous study (r = 0.95). This 

difference can be attributed to the shorter time period considered, which led to in-

creased variability in spring radiation at the specific station location.  

The presented study will serve as a basis for further research in the area. The aim 

is to map the possibilities of creating an algorithm for automatic outlier detection in 

measurements, to check the quality of measured data in general, the suitability of 

measurements for use in machine learning methods, etc. 
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