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A b s t r a c t :

In this contribution we construct noncommutative transposition hypergroups of in-
tegral operators on spaces of continuous functions which are determined by Fredholm
integral equations of the first and second kinds. We started with integral operators
formed by separated kernel. Moreover, we investigate the obtained hyperstructures as
transposition hypergroups and also related quasi-hypergroups of blocks of equivalence of
integral operators. Moreover, we use also the object function (where the corresponding
binary hyperoperation on an ordered group is defined as principal end generated by
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products of pairs of elements of the considered group) of a functor enabling the transfer
from the category of ordered groups and their isotone homomorphisms into the category
of hypergroups and their inclusion homomorphisms.

The basic group of integral operators contains an invariant subgroup. Using another
binary operation on the set of suitable Fredholm integral operators of the second kind
we get a group with a significant non-invariant subgroup of operators of the first kind
enabling the construction of a quasi-hypergroup of decomposition classes of operators,
structure of which is also clarified.

1 Introduction

Contemporary investigations of hyperstructures and their applications yield many rela-
tionships and connections between various fields of mathematics.

Besides the motivation for investigation of hyperstructures coming from noncom-
mutative algebra, geometrical structures and other mathematical fields there exist such
physical phenomena as the nuclear fission. Nuclear fission occurs when a heavy nucleus,
such as U235, splits, or fissions, into two smaller nuclei. As a result of this fission process
we can get several dozens of different combinations of two medium-mass elements and
several neutrons.

Another typical example of the situation when the result of interaction between two
particles is the whole set of particles is the interaction between a foton with certain energy
and an electron. The result of this interaction is not deterministic. A photo-electric effect
or Coulomb repulsion effect or changeover of foton onto a pair electron and positron can
arise.

It is to be noted that a similar situation which occurs during uranium fission appears
during several nuclear fission, too. The result depends on conditions. Although the input
(2 particles) are the same, the output can be variant.

Another motivation for investigation of hyperstructures yields from technical pro-
cesses as a time sequence of military car repairs with respect to its roadability conse-
quences and its operational behaviour.

Moreover, some ideas leading naturally to multistructures are also coming from
quantum mechanics, quantum optics with applications as quantum cryptography or, in
particular, development of quantum computers. The basic idea consist in fact that
quantum objects can be simulated in more different states simultaneously.

So, states of quantum object possess the property that they are not spacely localized.
Quantum particles are situated in many places at the same time and they are coming
through several trajectories simultaneously. Quantum computers give a technology which
is of the great interest worldwide. These computers should be able to provide extremely
quick computation thanks their possibility to be localized in more states together. In spite
of the fact this technology is developed on the basis of single-photon sources it seems
to be natural that in the field of quantum communication systems the theory of suitable
modified multistructures (hyperstructures—in contemporary terminology) can served
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as mathematical background. Let us recall the well known physicist John Archibald
Wheeler, one of coauthors of the “hypothesis of more worlds”, according to which by the
collapse of wave function reality is decomposed on more parallel branches.

1.1 A Scalable Quantum Computer Chip

A scalable quantum computer chip for atomic qubits has been built for the first time by
researchers at the University of Michigan, offering hopes for making a practical quantum
computer using conventional semiconductor manufacturing technology.

Exploiting the strange rules of the atomic world,quantum computers could potentially
break top-secret codes and perform certain kinds of searches much more quickly than
conventional computers. The building blocks of quantum computers are called ”qubits,”
or quantum bits, made of such objects as atoms or photons. Connecting multiple qubits
via an electrostatic (or other suitable) interaction could then result in a quantum computer,
similar to how wiring together individual transistors can make a traditional computer.

Unlike a conventional computer’s bits, which can have values of either 0 or 1, a qubit
can possess a value of 0 and 1 simultaneously, analogous to a light switch that’s on and
off at the same time. For their qubit the Michigan group chose an individual cadmium
ion, held in free space by a number of electrodes inside a postage-stamp-sized gallium
arsenide semiconductor chip. There additional electric fields are able to manipulate the
position of the ion, and laser beams could control the qubit value in the ion.

Ions pose an advantage over other potential qubits, such as photons and electron
dots, in that they are easier to isolate and shield from external disturbances (noise) that
can disrupt their operation. An integrated semiconductor chip is a markedly different
environment for ion qubits, which were previously held in hand-made ion traps that could
not be easily scaled up or mass produced.

The researchers have not yet demonstrated a quantum computer based on this design,
as it only consists of a single qubit. Making a quantum computer would require scaling
up a single chip so that it contains enough electrodes to trap many ions simultaneously.

1.2 Fredholm integral equations

In this paper we describe a certain construction (based on a simple but useful lemma—
Lemma 1) of hyperstructures belonging to the important class of transposition hyper-
groups which are also called noncommutative join spaces.

Fredholm integral equations can be considered as a modification of systems of linear
equations, thus this topic has algebraic roots. Using operators which correspond to Fred-
holm equations we will construct ordered groups determining transposition hypergroups.
Moreover, using certain subhypergroup of this transposition group we obtain hyperstruc-
tures of blocks of operators. In particular, by decomposition of the group of all Fredholm
integral operators of the second kind by its subgroup of operators of the first kind we
get a quasi-hypergroup of blocks of operators—which is a construction lying in the very
foundations of the hyperstructure theory.
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An integral equation in the form

ϕ(x)− λ

b∫
a

K(x, s)ϕ(s) ds = f (x), (1)

where K(x, s) (kernel), [x, s] ∈ 〈a, b〉 × 〈a, b〉 ⊂ R × R, is a real or complex valued
function (mostly positive real functions), f (x), x ∈ 〈a, b〉 ⊂ R, is a function called a free
or an absolute member, λ is a numerical parameter and ϕ is an unknown function, is called
Fredholm integral equation. More precisely, it is called Fredholm integral equation of

the second kind, whereas integral equation of the form
b∫
a

K(x, s)ϕ(s)ds = f (x) is called

Fredholm integral equation of the first kind. It is known that under some conditions the
solution of the Fredholm integral equation can be expressed both in the form of the sum
of Neumann’s series and with the usage of Fredholm resolvent.

Usually there are considered Fredholm integral equations with a nondegenerate
Lebesgue square integrable kernel K(x, s), i.e. Lebesgue integral

∫∫
M

|K(x, s)|2 dxds ,

where M = 〈a, b〉 × 〈a, b〉 ⊂ R × R, is convergent. In this contribution we will
construct noncommutative join spaces on the set of operators F(λ,K, f ) with continu-
ous functions f,K (absolute member and kernel) and a nonzero parameter λ. For our
purposes we will consider continuous positive functions only, in order to avoid some
obstacles in integrability of functions in the form of fractions. So we consider opera-
tors F(λ,K, f ) : C〈a, b〉 → C〈a, b〉 (C〈a, b〉 means the set of continuous functions on
〈a, b〉) of the type

F(λ,K, f )(ϕ(x)) = λ

∫ b

a

K(x, s)ϕ(s) ds + f (x) (2)

with a fixed interval 〈a, b〉 ⊂ R. The mentioned operator occurs in the construction of a
series of functions which approximate the solution of Fredholm equation (1).

2 Preliminaries

Now, recall some basic notions and used denotation from the hypergroup theory—[1,
2, 4]. We remind that a hypergroupoid is a pair (H, •), where H �= ∅ and operation
• : H×H → P∗(H) (the system of all nonempty subsets ofH ) is a binary hyperoperation
onH . If the associativity axiom a • (b • c) = (a • b) • c holds for all a, b, c ∈ H than the
pair (H, •) is called a semihypergroup. If moreover the reproduction axiom a•H = H =
= H • a is satisfied for any element a ∈ H than the pair (H, •) is called a hypergroup.
Here for any pair of nonempty subsets A,B ⊆ H we define its hyperproduct as A •B =
=

⋃{a • b ; a ∈ A, b ∈ B}. A hypergroupoid (H, •) where the reproduction axiom is
fulfilled is called a quasi-hypergroup. A subhypergroupoid of a hypergroupoid (H, •)
is a pair (S, •), where S • S ⊆ S, i.e. the set S is multiplicatively closed. If the
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subhypergroupoid (S, •) of (H, •) is a hypergroup then it is said to be a subhypergroup
of (H, •).

A hypergroup (H, •) is called a transposition hypergroup or a join space if it sat-
isfies the transposition axiom: For all a, b, c, d ∈ H the relation b\a ≈ c/d implies
a • d ≈ b • c, (here X ≈ Y for X,Y ⊆ H means X ∩ Y �= ∅), where sets b\a =
= {x ∈ H ; a ∈ b • x}, c/d = {x ∈ H ; c ∈ x • d} are called left and right extensions or
fraction, respectively.

We describe first the simple but important construction from [4] which has been used
also in [2] and enables to obtain in a certain sense analogous results to those presented in
this contribution.

By an quasi-ordered semigroup we mean a triple (G, •,�), where (G, •) is a semi-
group and binary relation “�” is a quasiorder ( reflexive and transitive) on the setG such
that for any triple x, y, z ∈ G with the property x � y also x • z � y • z, z • x � z • y.

By an ordered (semi)group we mean (as usual) a triple (G, •,�), where (G, •)
is a (semi)group and “�” is a reflexive, antisymmetrical and transitive binary rela-
tion on the set G such that for any triple x, y, z ∈ G with the property x � y also
x • z � y • z, z • x � z • y. Further, [a)� = {x ∈ G; a � x} is a principal end generated
by a ∈ G.

The following lemma which is crucial for our considerations is proved in [7]; firstly
in [4, p. 146, 147].

Lemma 1. Let a triple (G, ·,�) be a quasi-ordered semigroup. Define a hyperoperation
∗: G×G → P

∗(G) by a ∗ b = [a · b)� = {x ∈ G; a · b � x} for all pairs of elements
a, b ∈ G.
1. Then (G, ∗) is a semihypergroup which is commutative if the semigroup (G, ·) is

commutative.
2. Let (G, ∗) be the above defined semihypergroup. Then (G, ∗) is a hypergroup iff for

any pair of elements a, b ∈ G there exists a pair of elements c, c′ ∈ G with a property
a · c � b, c′ · a � b.

Remark 1. In case the binary relation “�” is even ordering the commutativity of (G, ∗)
implies the commutativity of (G, ·).(see [4, p. 146, 147])

Corollary 1. Let (G, ·,�) be an ordered group. Define a hyperoperation “∗” as follows:
∗: G×G → P∗(G) by a ∗ b = [a · b)� = {x ∈ G; a · b � x} for all pairs of elements
a, b ∈ G. Then (G, ∗) is a hypergroup which is commutative if and only if the group
(G, ·) is commutative.

3 Separable kernels

As quoted above, linear integral equations are the continuous analog of systems of
algebraic equations. From this point of view it is to be noted that Fredholm theory
is the theory of integral equations that have kernels K(x, s) that can be approximated
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arbitrarily accurately by separable kernels. These kernels can be written in the form

K(x, s) =
n∑
i=1

fi(x) · gi(s). It is useful to suppose that the sum has been reduced to

a form in which the functions fi are linearly independent and the functions giare also
linearly independent. Using [11] let us introduce simple example. Let us consider the
equation

u(x) = f (x)+ c

∫ 1

−1
cosπ(x − y)u(y)dy, (3)

where f(x) is some given integrable function. By expanding the cosine we can rewrite
this as

u(x) = f (x)+ cu1 sin(πx)+ cu2 cos(πx), (4)

where u1 = ∫ 1
−1 sin(πy)u(y)dy, u2 = ∫ 1

−1 cos(πy)u(y)dy. Multiplying the equation by
sin(πx) and integrating over the interval, and then doing the same with cos(πx), gives

u1 = f1 + cu1, u2 = f2 + cu2. (5)

When c = 1, there are two possibilities. If either f1 or f2 is not zero, the algebraic
system (5) has no solution, so the integral equation (3) has no solution. The alternative
is that f1 = f2 = 0. These are the Fredholm conditions on f (x). If they are satisfied,
then (with c = 1) the algebraic equation (5) is satisfied whatever values u1 and u2 may
be. Thus when c = 1, either (3) has no solution at all or, if the Fredholm conditions are
satisfied, there is a solution but it is not unique.

The kernel in this problem is separable. For any separable kernel, the problem boils
down to a matter of linear algebraic equations.

In the second part in connection with the Fredholm integral equations of first kind we
will study a special subgroupG0 so called second group of Fredholm Integral Operators.

The mentioned group G0 consists of operators of the form F(1,K, 0) where K is a
positive functions continuous on the interval J × J and this operator is acting in such a
way that for any continuous function ϕ ∈ C(J ) we have

F(1, k, 0)(ϕ) =
∫ b

a

K(x, s)ϕ(s)ds.

As a motivating construction for chapter 5.2 we describe a construction of action of
a hypergroupoid formed by integral operators with a separable kernels on the state set of
positive continuous functions.

In other words, it is so called multiautomaton with input alphabet formed by a hyper-
groupoid of just mentioned operators. This concept consists of a certain generalization of
a so called quasi-automaton where the condition MAC is replaced by GMAC (Generalized
Mixed Associativity Condition)—see [1].
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For an arbitrary fixed positive integer n ∈ N we denote by Spn(J × J ) the set of all

functions of the form K(x, s) =
n∑
i=1

k1i(x)k2i(s), k1i, k2i ∈ C(J ), i = 1, 2 . . . , n which

are in the role of separable kernels of the same length n.
We will construct a hypergroupoid (Spn(J × J ), ◦) acting on the ring of continuous

functions C(J ). For any pair K(x, s) =
n∑
i=1

k1i(x)k2i(s), G(x, s) =
n∑
i=1

g1i (x)g2i(s)

of functions from Spn(J × J ) we define the hyperproduct K ◦ G as the set of all

functions H(x, s) =
n∑
j=1

h1j (x)h2j (s), h1j , h2j ∈ C(J ), such that F(1,H, 0)(ϕ) =

=
∫ b
a
H(x, s)ϕ(s) ds =

n∑
j=1

cjh1j (x), cj = ∫ b
a
h2j (s)ϕ(s) ds, where g1j (x) � h1j (x)

for all j = 1, 2 . . . , n, x ∈ J and
n∑
i=1

aibij � cj , ai = ∫ b
a
k2i(x)ϕ(x) dx, bij =

=
∫ b
a k1i(x)g2j (x) dx, i, j = 1, 2 . . . , n, thus ai, bij are scalar products ai = (k2i, ϕ),

b1i = (k1i, g2j ). Evidently,
(
Spn(J × J ), ◦)

is a non-commutative hypergroupoid of
separable kernels of integral operators F(1,H, 0), K ∈ Spn(J × J ).

Now, we define the transition function δj : C(J )×Spn(J ×J ) → C(J ) in this way:

For any K(x, s) =
n∑
i=1

k1i (x)k2i(s) ∈ Spn(J × J ) and any ϕ ∈ C(J ) we put

δj (ϕ, k) = F(1,H, 0)(ϕ) =
∫ b

a

K(x, s)ϕ(s) ds

=
n∑
i=1

k1i (x)

∫ b

a

k2i (s)ϕ(s) ds =
n∑
i=1

aik1i(x). (6)

with coefficient ai = ∫ b
a
k2i (s)ϕ(s) ds = (k2i , ϕ), i = 1, 2 . . . , n. We conclude this part

of our considerations by verification that the hypergroupoid
(
Spn(J × J ), ◦)

really acts
on the ring C(J ), i.e. that the Generalized Mixed Associativity Condition (GMAC) is
satisfied. More in details we show that any triad

[K,G, ϕ] ∈ Spn(J × J )× Spn(J × J )× C(J )

the relationship δj
(
δj (ϕ, k),G

) ∈ δj (ϕ, k ◦G) = {δj (ϕ,H);H ∈ K ◦G} holds.

Indeed, for arbitraryK(x, s) =
n∑
i=1

k1i(x)k2i(s),G(x, s) =
n∑
i=1

g1i (x)g2i (s) and any

function ϕ ∈ C(J ) we have

δj
(
δj (ϕ,K),G

) = δj

( n∑
i=1

aik2i(x),G
)

=
∫ b

a

( n∑
i=1

g1i (x)

∫ b

a

g2i (s)
)( n∑

i=1

aik2i (x)
)

ds

=
∫ b

a

(
g11(x)g21(s)+ g12(x)g22(s)+ · · · + g1n(x)g2n(s)

) ·
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· (
a1k11(s)+ a2k12(s)+ · · · + ank1n(s)

)
ds

=
∫ b

a

(
a1g11(x)g21(s)k11(s)+ a1g12(x)g22(s)k11(s)+ · · · + a1g1n(x)g2n(s)k11(s)

+ a2g11(x)g21(s)k12(s)+ · · · + a2g1n(x)g2n(s)k12(s)+ . . .

+ ang11(x)g21(s)k1n(s)+ · · · + ang1n(x)g2n(s)k1n(s)
)

ds

= a1g11(x)

∫ b

a

g21(s)k11(s) ds + a1g12(x)

∫ b

a

g22(s)k11(s) ds + . . .

+ a1g1n(x)

∫ b

a

g2n(s)k11(s) ds + a2g11(x)

∫ b

a

g21(s)k12(s) ds + . . .

+ a2g12(x)

∫ b

a

g22(s)k12(s) ds + · · · + a2g1n(x)

∫ b

a

g2n(s)k12(s) ds + . . .

+ ang11(x)

∫ b

a

g21(s)k1n(s) ds + · · · + ang1n(x)

∫ b

a

g2n(s)k1n(s) ds

= a1b11g11(x)+ a1b12g12(x)+ · · · + a1b1ng1n(x)+ a2b21g11(x)+ a2b22g12(x)

+ · · · + a2b2ng1n(x)+ · · · + anbn1g11(x)+ · · · + anbnng1n(x)

= (a1b11 + a2b21 + · · · + anbn1)g11(x)+ (a1b12 + a2b22 + · · · + anbn2)g12(x)

+ · · · + (a1b1n + a2b2n + · · · + anbnn)g1n(x)

=
( n∑
i=1

aibi1

)
g11(x)+

( n∑
i=1

aibi2

)
g12(x)+ · · · +

( n∑
i=1

aibin

)
g1n(x)

=
n∑
j=1

( n∑
i=1

aibij

)
g1j (x) ∈

{ n∑
j=1

cjh1j (x);
n∑
i=1

aibij � cj , g1j (x) � h1j (x),

h1j ∈ C(J ), j = 1, 2, . . . , n, x ∈ J
}

= {H(x, s)(ϕ);H ∈ K ◦G} = δj (ϕ,K ◦G),

therefore GMAC (the Generalized Mixed Associativity Condition) is satisfied. Conse-
quently, (C(J ), Spn(J xJ ), δj ) is a multiautomaton with the state set C(J ) and the input
hypergroupoid (Spn(J xJ ), ◦) of separable kernels

K(x, s) =
n∑
i=1

k1i(x)k2i(y) ∈ C(J × J )

with the above defined binary hyperoperation, i.e. it is an action of the mentioned
hypergroupoid on the set C(J ).

It is to be noted that multiautomata constructed from integral operators are of the
so called “centralizer” type []. It means that input hyperstructures are constructed using
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centralizers of given operators. Here, using separable kernels we obtained construction
of multiautomata of more general form.

4 Constructions of join spaces of operators
based on ordered groups

In the sequel we will denoteC(J ),C(J ×J ) the sets of continuous functions on J , J ×J ,
respectively, where J ⊆ R is an interval and f (x) �= 0 for all x ∈ J .

Proposition 1. Let J = 〈a, b〉, F = {F(λ,K, f ) : K(x, s) ∈ C(J × J ), f ∈ C+(J ),
λ �= 0}, where F(λ,K, f ) is given by (2). For any pairs of operators F(λ1,K1, f1),
F(λ2,K2, f2) in F let us define

F(λ1,K1, f1) · F(λ2,K2, f2) = F(λ1λ2,K2f1 +K1, f1f2) (7)

and F(λ1,K1, f1) � F(λ2,K2, f2) if and only if λ1 = λ2, f1(x) ≡ f2(x) and
K1(x, s) � K2(x, s) for any [x, s] ∈ J × J . Then (F, ·,�) is a noncommutative
ordered group.

Proof. The proof is straightforward.

Now we apply the simple construction of a hypergroup from Lemma 1 onto this
considered concrete case of integral operators:

For an arbitrary pair of operators F(λ1,K1, f1), F (λ2,K2, f2) ∈ F we define a
hyperoperation ∗: F × F → P∗(F) as follows:

F(λ1,K1, f1) ∗ F(λ2,K2, f2) = (8)

= {F(λ,K, f ) ∈ F;F(λ1,K1, f1) · F(λ2,K2, f2) � F(λ,K, f )}
= {F(λ,K, f ) ∈ F;F(λ1λ2,K2f1 +K1, f1f2) � F(λ,K, f )}
= {F(λ1λ2,K, f1f2);K2(x, s)f1(x)+K1(x, s) � K(x, s), [x, s] ∈ J × J }.

Then we obtain from Proposition 1 with respect to Lemma 1 immediately:

Proposition 2. Let J = 〈a, b〉 ⊆ R and ∗: F × F → P∗(F) be the above defined binary
hyperoperation. Then the hypergroupoid (F, ∗) is a noncommutative hypergroup.

Now we are going to verify that the above constructed noncommutative hypergroup
(F, ∗) is in fact a join space. The following auxiliary assertion will be very useful for the
proof.

Lemma 2. Let J ⊆ R be a compact interval and F(λ1,K1, f1), F (λ2,K2, f2) ∈ F be
arbitrary operators, i.e. elements of the hypergroup (F, ∗). Then
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1◦ F(λ1,K1, f1)/F (λ2,K2, f2) =
=

{
F

(λ1

λ2
,K,

f1

f2

)
: K(x, s) � K1(x, s)−K2(x, s)

f1(x)

f2(x)
, [x, s] ∈ J

}
,

2◦ F(λ2,K2, f2)\F(λ1,K1, f1) =
=

{
F

(λ1

λ2
,K,

f1

f2

)
: K(x, s) � K1(x, s)−K2(x, s)

f2(x)
, [x, s] ∈ J

}
.

Proof. Considering the fact that the function f2 is positive and λ2 �= 0 on the whole
J × J with respect to the definitions of the corresponding hyperoperations we obtain for
arbitrary pairs of operators F(λ1,K1, f1), F (λ2,K2, f2) ∈ F that

F(λ1,K1, f1)/F (λ2,K2, f2) =
=

{
F

(λ1

λ2
,K,

f1

f2

)
: K(x, s) � K1(x, s)−K2(x, s)

f1(x)

f2(x)

}
.

Hence formula 1◦ is proved. Finally,

F(λ2,K2, f2)\F(λ1,K1, f1) =
=

{
F

(λ1

λ2
,K,

f1

f2

)
: K(x, s) � K1(x, s)−K2(x, s)

f2(x)

}
.

and formula 2◦ is proved, as well.

Theorem 1. Let J × J ⊆ R × R, F = {F(λ,K, f ) : K ∈ C(J × J ), f ∈ C+(J ),
λ �= 0} be the set of Fredholm integral operators. If F(λ1,K1, f1) ∗ F(λ2,K2, f2) =
= {F(λ,K, f ) ∈ F; λ1λ2 = λ, f1f2 = f,K2f1 +K1 � K} for any pair F(λ1,K1, f1),
F(λ2,K2, f2) ∈ F, then (F, ∗) is a noncommutative transposition hypergroup, i.e. a
noncommutative join space.

Proof. By Proposition 2 the hypergroupoid (F, ∗) is a noncommutative hypergroup. It
remains to prove that this hypergroup satisfies the transposition law:

Suppose F(λi,Ki, fi) ∈ F, i = 1, 2, 3, 4 is a quadruple of integral operators such
that

F(λ2,K2, f2)\F(λ1,K1, f1) ≈ F(λ3,K3, f3)/F (λ4,K4, f4),

then F(λ1,K1, f1) ∗ F(λ4,K4, f4) ≈ F(λ2,K2, f2) ∗ F(λ3,K3, f3). If{
F

(λ1

λ2
,K,

f1

f2

)
: K � K1 −K2

f2

}
∩

{
F

(λ3

λ4
,K,

f3

f4

)
: K � K3 −K4

f3

f4

}
�= ∅,

thus there exist an operator F(λ,K, f ) ∈ F such that λ = λ1

λ2
= λ3

λ4
and f =

=
f1

f2
= f3

f4
we have λ1λ4 = λ2λ3, f1f4 = f2f3 and K is a function satisfying
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K � K1−K2
f2

,K � K3 −K4
f3
f4

. Let us define λ = λ1λ4 = λ2λ3, f (x) = f1(x)f4(x) =
= f2(x)f3(x), x ∈ J and

K(x, s) � max{K4(x, s)f1(x)+K1(x, s),K3(x, s)f2(x)+K2(x, s)}, x, s ∈ J.
Then F(λ,K, f ) ∈ F and with respect to Lemma 2 we have

F(λ,K, f ) ∈ {F(λ1λ4,K, f1f4);K4f1 +K1 � K} = F(λ1,K1, f1) ∗ F(λ4,K4, f4),

F (λ,K, f ) ∈ {F(λ2λ3,K, f2f3);K3f2 +K2 � K} = F(λ2,K2, f2) ∗ F(λ3,K3, f3),

consequentlyF(λ1,K1, f1)∗F(λ4,K4, f4) ≈ F(λ2,K2, f2)∗F(λ3,K3, f3), hence the
hypergroup (F, ∗) is a noncommutative join space.

5 Constructions of join spaces of operators
based on decompositions

The following simple general construction will be used in special cases for groups of
integral operators.

Lemma 3. Let R be an equivalence on an arbitrary set S. For x, s ∈ S let us define a
hyperoperation � : S × S → P∗(S) as follows:

x � y = X ∪ Y , where X ,Y are the classes of decomposition S/R
containing x, y, respectively.

Then the pair (S, �) is a commutative join space.

Proof. For an arbitrary equivalence R on the set S and for the corresponding decom-
position S/R by defining x � y = X ∪ Y for x, y ∈ S, x ∈ X , y ∈ Y (X ,Y not
necessarily different) we get that (S, �) is a commutative hypergroup. Indeed, if x ∈ X ,
y ∈ Y , z ∈ Z , where X ,Y ,Z ∈ S/R, then

x � (y � z) = x � (Y ∪ Z ) = (x � Y ) ∪ (x �Z ) = ( ⋃
t∈Y

x � t
) ∪ ( ⋃

u∈Z

x � u
) =

(X ∪ Y ) ∪ (X ∪ Z ) = X ∪ Y ∪ Z = Z ∪ X ∪ Y = z � (x � y) = (x � y) � z.

It remains to prove that the reproduction axiom holds. Indeed,

x � S = S � x =
⋃
t∈S
t � x =

⋃
t∈S

X �R(t) =
⋃
S/R = S.

For α, β ∈ S we have

α/β = {x ∈ S, α ∈ x � β} =
{

R(α) if α nonR β,

S if αR β.
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Here R(α) = {γ ∈ S, αR γ }. It remains to prove the transposition axiom, i.e.
α/β ≈ γ /δ implies α � δ ≈ β � γ , therefore R(α) ∪ R(δ) ≈ R(β) ∪ R(γ ) in our
case.
1. Let α/β = R(α) and γ /δ = R(γ ). Then R(α) ≈ R(γ ) implies αR γ , thus R(α) =

= R(γ ), thus α � δ ≈ β � γ holds.
2. Let α/β = R(α) and γ /δ = S. Then R(γ ) = R(δ) and α � δ ≈ β � γ holds.
The remaining cases can be verified in a similar way.

5.1 First group of Fredholm integral operators

Let us denote by F1, F2 subsets of F formed by integral operators of the formF(1,K, f ),
F(λ,K, 1), respectively.

Lemma 4. The above defined sets F1,F2 are the carriers of normal subgroups of the
group F.

Proof. Let F(1,K, f ), F(1,K1, f1) ∈ F1 be an arbitrary pair of operators. Then

F(1,K, f ) · F−1(1,K1, f1) = F
(

1,K −K1
f

f1
,
f

f1

)
∈ F1, (9)

hence (F1, ·) is a subgroup of (F, ·). Similarly for F(λ,K, 1), F(λ̄, K̄, 1) ∈ F2:

F(λ,K, 1) ·F−1(λ̄, K̄, 1) = F(λ,K, 1) ·F
( 1

λ̄
,−K̄, 1

)
= F

(λ
λ̄
,K− K̄, 1

)
∈ F2.

So, (F2, ·) is a subgroup of the group (F, ·). Further, let F(λ,K, f ) ∈ F, F(1,K1, f1)

∈ F1. Then

F(λ,K, f ) · F(1,K1, f1) · F−1(λ,K, f ) =
= F(λ,K1f +K,ff1) · F

( 1

λ
,−K

f
,

1

f

)
= F

(
1,K1f −K(f1 − 1), f1

) ∈ F1.

Thus, for an arbitrary F(λ,K, f ) ∈ F we obtain F(λ,K, f ) · F1 · F−1(λ,K, f ) ⊂ F1.
Consequently the group (F1, ·) is a normal subgroup of the group (F, ·).

Analogously let F(λ,K, f ) ∈ F, F(λ̄, K̄, 1) ∈ F2 be an arbitrary pair of operators.
Then F(λ,K, f ) · F(λ̄, K̄, 1) · F−1(λ,K, f ) = F(λ̄, K̄f, 1) ∈ F2. We get that the
group (F2, ·) is a normal subgroup of the group (F, ·).

5.2 Second group of Fredholm integral operators

Let us define another type of multiplication of Fredholm integral operators. We con-
sider the set G = {F(λ,K, f ), λ �= 0,K �= 0 for arbitrary pairs (x, y) ∈ J × J ,
K ∈ C(J × J ), f ∈ C(J )}.
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F(λ1,K1, f1)� F(λ2,K2, f2) = F(λ1λ2,K1K2, λ1K̂1f2 + f1), (10)

where K̂(x, s) = K(x, x)

(we use only a diagonal of the square 〈a, b〉 × 〈a, b〉). The (G,�) is a noncommutative
group of Fredholm operators of the second kind which has a subgroup of the form
G0 = {F(1,K, 0);K ∈ C+(J × J )}.

Here C+(J × J ) means the set of positive continuous functions on J × J .

5.3 Decomposition of join spaces determined by subgroups F1, F2
and G0

This part is devoted to the algebraization of the left decomposition of the group (G,�)
by its (non–invariant) subgroup (G0,�) under certain simplified conditions concerning
kernels and free members determining considered integral operators of the form

F(1,K, 0)(ϕ) =
b∫
a

K(x, s)ϕ(s)ds,

which can be specified under some changes concerning bounds of the considered integral
and by transfer into the complex domain. Concretely, by special choice of kernels
K(x, y) we obtain various integral transformations as classical Laplace or Laplace-
Carson transforms, Fourier transforms or Mellin and Hankel transforms. Of course,
mentioned integral transformations are well-defined under special conditions demanded
for pre-image functions ϕ.

We describe left and right decompositions of (G,�) determined by its subgroup
(G0,�) which are created by the left and right translation of this subgroup,

L (G) = G/LG0 = {F(λ,K, f )� G0;F(λ,K, f ) ∈ G},
R(G) = G/RG0 = {G0 � F(λ,K, f );F(λ,K, f ) ∈ G}.

Here

EL = {[F(λ1,K1, f1), F (λ2,K2, f2)] ∈ G × G; F−1(λ1,K1, f1)� F(λ2,K2, f2) ∈ G0
}
,

ER = {[F(λ1,K1, f1), F (λ2,K2, f2)] ∈ G × G; F(λ2,K2, f2)� F−1(λ1,K1, f1) ∈ G0
}

are the corresponding equivalences. Evidently, we have F(λ1,K1, f1)EL

F(λ2,K2, f2) if and only if F(λ2,K2, f2) ∈ F(λ1,K1, f1)�G0, i.e. ∃F(1,K, 0) ∈ G0
such that for a suitable kernel K(x, s) : 〈a, b〉 × 〈a, b〉 → R determining the operator

ϕ(x) �→
b∫
a

K(x, s)ϕ(s) ds it holds: F(λ1,K1, f1) � F(1,K, 0) = F(λ2,K2, f2), so

F(λ1,KK1, f1) = F(λ2,K2, f2) and λ1 = λ2, KK1 = K2, f1 = f2.
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Whereas F(λ1,K1, f1)ER F(λ2,K2, f2) if and only if F(λ2,K2, f2) ∈ G0�
F(λ1,K1, f1), F(λ2,K2, f2) = F(λ1,KK1, K̂f1) for suitable F(1,K, 0) ∈ G0, i.e.
∃F(1,K, 0) ∈ G0 such that K2 = KK1, λ1 = λ2, f2 = K̂f1.

Let us describe the decomposition of the group (F, ·) determined by its subgroup
(F1, ·). As it was mentioned above the subgroup is normal, so the left and right decom-
positions are equal.

F/RF1 = F/LF1 = {F1 · F(λ,K, f ) = F(λ,K, f ) · F1;F(λ,K, f ) ∈ F}.
Here

E1 = {[F(λ1,K1, f1), F (λ2,K2, f2)] ∈ F × F; F−1(λ1,K1, f1) · F(λ2,K2, f2) ∈ F1

or F(λ2,K2, f2) · F−1(λ1,K1, f1) ∈ F1}
is the corresponding equivalence.

Evidently, we have F(λ1,K1, f1)E1 F(λ2,K2, f2) if and only if F(λ2,K2, f2) ∈
F1 · F(λ1,K1, f1); i.e. ∃F(1,K, f ) ∈ F1 such that F(λ2,K2, f2) = F(1,K, f )·
F(λ1,K1, f1).

So we have K2 = K1f +K,λ1 = λ2, f2 = ff1.

Let us describe the decomposition of the group (F, ·) determined by its subgroup
(F2, ·). As it was mentioned above the subgroup is normal, so the left and right decom-
positions are equal.

F/RF2 = F/LF2 = {F2 · F(λ,K, f ) = F(λ,K, f ) · F2;F(λ,K, f ) ∈ F}.
Here

E2 = {[F(λ1,K1, f1), F (λ2,K2, f2)] ∈ F × F;F−1(λ1,K1, f1) · F(λ2,K2, f2) ∈ F2,

F (λ2,K2, f2) · F−1(λ1,K1, f1) ∈ F2}
is corresponding equivalence.

Evidently, we have F(λ1,K1, f1)E2 F(λ2,K2, f2) if and only if F(λ2,K2, f2) ∈
F2 · F(λ1,K1, f1) = F(λλ1,K1 +K,f1) for suitable F(λ,K, 1) ∈ F2, i.e.
∃F(λ,K, 1) ∈ F2 such that K2 = K1 +K,λλ1 = λ2, f2 = f1.

The above obtained decompositions G/RG0, G/LG0, F/RF1 = F/LF1, F/RF2 =
= F/LF2 make possible to construct certain hypergroups.

Theorem 2. The pairs (F, �i) for i = 1, 2 and (G, �), where

x �i y = X ∪ Y for x ∈ X , y ∈ Y ,X ,Y ∈ F/Fi,

x � y = X ∪ Y for x ∈ X , y ∈ Y ,X ,Y ∈ G/LG0

are join spaces.
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Proof. Considering Lemma 3 the proof is evident.

We have F(λ,K, f ) = F(μ,P, g) ⇔ ∀ϕ ∈ C(J ) : F(λ,K, f )(ϕ) =
F(μ,P, g)(ϕ) ⇔ λ

∫ b
a K(x, s)ϕ(s)ds + f (x) = μ

∫ b
a P (x, s)ϕ(s)ds + g(x).

1. For ϕ ≡ 0 we obtain f (x) ≡ g(x).
Denote λ

μ
= κ �= 0, then

∫ b
a

(
κK(x, s)− P(x, s)

)
ϕ(s)ds = 0.

For any ϕ ∈ C(J ) : ∫ b
a

(
κK(x, s) − P(x, s)

)
ϕ(s)ds = 0. Let x0 ∈ J be an arbi-

trary but fixed chosen. Then
∫ b
a

(
κK(x0, s) − P(x0, s)

)
ϕ(s)ds = 0, denote ξx0(s) =

= κK(x0, s) − P(x0, s), i.e.
∫ b
a ξx0(s)ϕ(s)ds = 0 for any ϕ ∈ C(J ). This implies that

ξx0(s) = 0 for all s ∈ J , i.e. λK(x0, s) = μP(x0, s) for any s ∈ J . Since x0 ∈ J was
an arbitrary point we get λK(x, s) = μP(x, s) on J × J . Consequently we proved the
implication F(λ,K, f ) = F(μ,P, g) implies f = g and λK = μP .

Define the following equivalence ρ on F in this way: For F(λ,K, f ), F (μ, P, g)
∈ F we get F(λ,K, f )ρF(μ, P, g) whenever f = g and λK = μP . Evidently ρ is an
equivalence relation on F.

We will show that this equivalence ρ is a congruence on the group (G,�). Let
F(λi,Ki, fi), F(λ,K, f ) ∈ G (for i=1,2) be an arbitrary triple of integral operators,
such that the relation F(λ1,K1, f1) ρ F (λ2,K2, f2) holds. Then λ1K1 = λ2K2, f1 =
= f2 and we have

F(λ,K, f )� F(λ1,K1, f1) = F(λλ1,KK1, λK̂f1 + f ),

F (λ,K, f )� F(λ2,K2, f2) = F(λλ2,KK2, λK̂f2 + f ).

Now λλ1KK1 = λKλ1K1 = λKλ2K2 and λK̂f1 + f = λK̂f2 + f , thus(
F(λ,K, f )� F(λ1,K1, f1)

)
ρ
(
F(λ,K, f )� F(λ2,K2, f2)

)
.

Similarly we obtain that(
F(λ1,K1, f1)� F(λ,K, f )

)
ρ
(
F(λ2,K2, f2)� F(λ,K, f )

)
.

So ρ is a congruence.
Consider the ρ–class containing the unit F(1, 1, 0), i.e. ρ

(
F(1, 1, 0)

) ∈ F/ρ. Sup-
pose F(λ,K, f ) ∈ ρ(

F(1, 1, 0)
)
, i.e.

F(λ,K, f )ρF(1, 1, 0), i.e. λK = 1, f ≡ 0. Then

F(λ,K, f )(ϕ) =
b∫
a

ϕ(s)ds = F(1, 1, 0)(ϕ)

for any ϕ ∈ C(J ). This means that anyρ–class is formed exactly by one integral operator.
Choosing one representative of each class we can deduce fromF(λ,K, f ) = F(μ,P, g)

that λ = μ, K = P , f ≡ g for the representing operator of the corresponding class of
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the equivalence defined by [λ,K, f ] ∼ρ [μ,P, g] iff λK = μP , f = g. Thus ∼ρ is an
equivalence on F, where

F = R+ × C(J × J )× C(J ).

Let L be the equivalence relation on G determined by the left decomposition of
G by G0. That is G/LG0 = {F(λ,K, f ) � G0;F(λ,K, f ) ∈ G} = L (G). We
show first which pairs of operators from G belong to the same block of decomposi-
tion L (G). So let X ∈ L (G) be an arbitrary block, F(λ,K, f ), F (μ, P, g) ∈ X .
Then F(λ,K, f ) ∈ F(μ,P, g) � G0. This is equivalent to existence of a function
U ∈ C(J × J ) such that F(λ,K, f ) = F(μ,P, g) � F(1, U, 0) = F(μ,PU, g).

On the other hand there exists a function V ∈ C(J × J ) such that F(μ,P, g) =
= F(λ,K, f ) � F(1, V , 0) = F(λ,KV, f ). From these equalities there follows that
F(λ,K, f ), F(μ,P, g) belongs to the same block of L (G), i.e.

F(λ,K, f )LF(μ,P, g) if and only if λ = μ, f = g.
We are going to define a binary hyperoperation on the factor set L (G) = G/LG0.

Remember that for arbitrary pairs X ,Y ∈ L (G) we put

X � Y ={F(λ,K, f ); F(λ,K, f ) = F(λ1,K1, f1)� F(λ2,K2, f2),

F (λ1,K1, f1) ∈ X , F (λ2,K2, f2) ∈ Y }.
Then for an arbitrary pair X ,Y ∈ L (G) we define

X � Y = {Z ∈ L (G),Z ∩ (X � Y ) �= ∅}.
This is the usual construction in algebraic hyperstructure theory.
In what follows we suppose

G = {F(λ,K, f ), where λ ∈ R, λ > 0,K ∈ C+(J × J )}.
Proposition 3. The hypergroupoid (L (G), �) is a quasi–hypergroup with the following
properties.
1. For any X ∈ L (G) there holds X �G0 = {X }, i.e. G0 is the right unit of (L (G), �)

and X ∈ G0 �X .
2. If X ,Y ∈ L (G) are blocks with representing operators F(λ,K0, f ) ∈ X ,
F(μ,P0, g) ∈ Y such that g ∈ C+(J ), f ∈ C+(J ) we have

X � Y =
{[
F(λμ,KP, h)

];K,P ∈ C+(J × J ), h ∈ C(J ), h > f
}
.

Here by [·] we mean the block with representing operator ·.
Proof. Let X ∈ L (G) be an arbitrary block and F(λ,K, f ) ∈ X be its arbitrary
representing operator. For arbitrary F(1, P, 0) ∈ G0 we have

F(λ,K, f )� F(1, P, 0) = F(λ,KP, f ) ∈ X ,
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thus X � G0 ⊂ X . Then X � G0 = {Z ,Z ∈ L (G),Z ∩ (X � G0) �= ∅} =
= {X }. Moreover F(1, P, 0) � F(λ,K, f ) = F(λ,KP, P̂ f ). Since any function
U ∈ C+(J × J ) can be represented in the form U = KP with the fixed function K
given above, we have the set G0 � X is saturated in the factor set G/LG0 = L (G), i.e.
G0 � X is a union of some blocks of G/G0. For P = 1 we get F(λ,K, f ) ∈ G0 � X ,
consequently X ∈ G0 �X .

Let us denote � = {[F(λμ,KP, h)];K,P ∈ C+(J × J ), h ∈ C(J ), h > f }. Let
[F(ξ,U, ϕ)] ∈ X � Y . Then ξ = λμ, U = KP for a suitable pair K,P ∈ C+(J × J )

and ϕ = λK̂g + f > f since λK̂g > 0 on J , which implies X � Y ⊂ �.
Suppose F(ξ,U, ϕ) ∈ �. Then ξ = λμ and there exists K1, P1 ∈ C+(J × J ) such

that U = K1P1, moreover ϕ is a continuous function on J , f (x) < ϕ(x) for any x ∈ J .
Consider a function K : J × J → R defined in this way: Denote

ψ(x) = ϕ(x)− f (x)

g(x)
for x ∈ J.

Since g is a positive function, ψ is well defined and it is also positive and continuous on
the segment J . That is ψ ∈ C+(J ). Define

K(x, y) =
⎧⎨
⎩

1
λ
ψ(x) if x = y ∈ J,

1
λ
ψ(y) if x �= y, y ∈ J.

In detail K(x1, y) = K(x2, y) for all pairs x1, x2 ∈ J , if x1 �= y �= x2, i.e. the
functionK(x, y) on the square J × J is continuously extended from the diagonal J × J

in such a way that this function K(x, y) on segments y = y0, x = t , t ∈ J is constant.
Thus K ∈ C+(J × J ) and F(λ,K, f )LF(λ,K0, f ), i.e. F(λ,K, f ) ∈ X . Define
a function P : J × J → R by the equality P2 = 1

K
K1P1 = U

K
. Then F(μ,P2, g) ∈ Y

and we have

[F(ξ,U, ϕ)] = [F(λμ,KP2, ψg + f )] =
[F(λμ,KP2, λK̂g + f )] = [F(λ,K, f )� F(μ,P2, g)] ∈ X � Y ,

thus� ⊂ X � Y . Consequently the equality X � Y = � holds.

The description of the structure of G/RG0 in detail, i.e. dual hyperstructure on the
carrier G/RG0, seems to be open.
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