Lubomír POPELÍNSKÝ

# INFLUENCE OF DESIGN CHARACTERISTICS OF THE PYRO-RECOCKING SYSTEM ON ITS FUNCTION

Reviewer: Stanislav BEER

#### Abstract:

The paper deals with the influence of individual design characteristics of the pyro-system used for the recocking of the automatic cannon on the magnitude of the velocity of the piston which controls the mechanism recocking. The basic design characteristics are: the cross-section of the gas port  $S_A$ , the acting area of the piston  $S_{p,.}$  the initial volume of the gas cylinder  $V_{A0}$  and the cross-section of the piston rod gap  $S_{GA}$ . The paper utilizes the theory published in the paper [1] in AiMT No 1/2007.

### 1. Introduction

The pyro-recocking system (including its theory) has been discussed in paper [1] published in AiMT 1/2007. The task of this system is to ensure the recocking of the automatic cannon in case of the misfired cartridge. This system used in the new Czech 20mm two barrel aircraft automatic cannon ZPL-20 and main features of its final part – the gas-piston arrangement - are shown in Fig. 1a. The gases from the pyro-cartridge entering into the channel flow through the gas port into the gas cylinder, where they act on the piston and accelerate it. The motion of the piston is utilized for the acceleration of the weapon mechanism. The intensity of this acceleration is influenced

by the pressure of gases in the channel (when burning the propellant charge and also after the end of this burning) as it was explained in [1]. But not only by this pressure - also the design characteristics of the gas piston arrangement may seriously influence the function. To give better idea about this arrangement its complete construction is shown in Fig. 1b. This figure represents two gas cylinders (belonging to two barrels of the cannon). In each cylinder there is the piston and sliding sleeve. These sleeves ensure the filling of the required gas cylinder by gases flowing from the pyrocartridge. The lower gas cylinder (Fig. 1b) is open for gases because the piston has transferred the sleeve into its rear position. The upper gas cylinder is out of function because its sleeve is in its front position (its orifice  $S_A$  is closed).



Fig. 1 Scheme of the pyro-recocking system

The initial values of design characteristics which will be changed in this paper to obtain their influence on the function utilized from [1] are:

| cross-section of the gas port       | $S_A = 0.000028274 \text{ m}^2$     |
|-------------------------------------|-------------------------------------|
| acting area of the piston           | $S_p = 0.00076105 \text{ m}^2$      |
| initial volume of the gas cylinder  | $V_{A0} = 0.000015974 \text{ m}^3$  |
| cross-section of the piston rod gap | $S_{GA} = 0.000014261 \text{ m}^2.$ |

The other characteristics of the pyro-recocking system in this paper are the same as mentioned in [1].

### 2. Influence of the orifice cross-section $S_A$

To obtain this influence the calculations for different values  $S_A$  have been realized. In addition to basic value  $S_A$  two new changed values of this cross-section – decreased by 20% and 40% - were taken into consideration. The results of these calculations are represented by graphs in Fig. 2 and Fig. 3. Fig. 2 shows the influence of the change of  $S_A$  on the magnitude of the piston velocity v (at the time t = 0.004 s) – see Table 1. At the basic magnitude of  $S_A = 0.000028274$  m<sup>2</sup> is this velocity v = 8.04 m.s<sup>-1</sup>.

The conclusion from Fig. 2 and Table 1 is that the increase of  $S_A$  decreases the velocity v. This interesting conclusion explains Fig. 3, where the pressure in the gas cylinder  $p_A$  is represented by pressure – time curves. For decreased  $S_A$  the impulse of gases on the piston (corresponding with the area bellow the pressure – time curve) is greater and therefore the piston velocity v reaches higher value. This fact is caused by the decreased flow of gases into the gas cylinder at the beginning what canses the slow increase of the pressure  $p_A$ .



Fig. 2 Influence of  $S_A$  on the piston velocity v



Fig. 3 Influence of  $S_A$  on the pressure in the gas cylinder  $p_A$ 

But it causes also the slow decrease of the pressure in the channel  $p_C$  (the channel is the source of gases). The result of it is that the time interval of the gas cylinder filling  $p_C > p_A$  is prolonged. In the period  $p_A > p_C$  (the flow of gases in the opposite direction – from the gas cylinder into the channel) the decrease of the pressure  $p_A$  is also slower. If the cross-section  $S_A$  is greater the function proceeds in the opposite way – the period  $p_C > p_A$  is shorter, the impulse on the piston is lower and the piston reaches lower value of the velocity v. Table 1 shows that any percentual decrease of  $S_A$ causes much greater percetual increase of the velocity v.

#### Values of changed velocity v in t = 4 ms at the change of $S_A$

Table 1

| Changed S <sub>A</sub> | <b>∆S<sub>A</sub> [%]</b> | <i>v</i> [ <b>m.</b> s <sup>-1</sup> ] | ∆v [%] |
|------------------------|---------------------------|----------------------------------------|--------|
| $0.8 S_A$              | - 20                      | 11.09                                  | + 37.9 |
| $0.6 S_A$              | - 40                      | 15.60                                  | + 94.0 |



3. Influence of the acting area of the piston Sp

Fig. 4 Influence of  $S_p$  on the piston velocity v

| Values of changed velocity v in $t = 4$ ms at the change of | ocity v in $t = 4$ ms at the change of $S_n$ | v in t | velocity | changed | Values of |
|-------------------------------------------------------------|----------------------------------------------|--------|----------|---------|-----------|
|-------------------------------------------------------------|----------------------------------------------|--------|----------|---------|-----------|

Table 2

| Changed S <sub>p</sub> | <b>ΔS<sub>p</sub></b> [%] | <i>v</i> [m. s <sup>-1</sup> ] | ∆v [%] |
|------------------------|---------------------------|--------------------------------|--------|
| $0.7 S_p$              | - 30                      | 5.92                           | - 26.4 |
| $0.9 S_p$              | - 10                      | 7.37                           | - 8.3  |
| $1.1 \ S_p$            | + 10                      | 8.68                           | + 8.0  |
| $1.3 S_p$              | + 30                      | 10.55                          | + 31.2 |

Next design characteristics of the pyro-recocking system is the acting area of the piston  $S_p$ . The graphs in Fig. 4 and the values in Table 2 show, that the percentual change of the piston velocity  $\Delta v$  (with respect to the basic velocity  $v = 8.04 \text{ m.s}^{-1}$ ) is nearly the same as for the percentual change of the acting area of the piston  $\Delta S_p$ .



## 4. Influence of the initial volume of the gas cylinder $V_{A0}$

Fig. 5 Influence of  $V_{A0}$  on the piston velocity v

### Values of changed velocity v in t = 4 ms at the change of $V_{A0}$

Table 3

| Changed V <sub>A0</sub> | ⊿ V <sub>A0</sub> [%] | <i>v</i> [m. s <sup>-1</sup> ] | ⊿v [%] |
|-------------------------|-----------------------|--------------------------------|--------|
| 0.8 V <sub>A0</sub>     | - 20                  | 6.91                           | - 14.1 |
| $1.5 V_{A0}$            | + 50                  | 10.87                          | + 35.2 |

The curves v = f(t) in Fig. 5 for different values of the initial volume of the gas cylinder  $V_{A0}$  represent the influence of  $V_{A0}$  on the function of the gas piston arrangement in the pyro-recocking system. The result is, that after initial increase of v the decrease of  $V_{A0}$  for longer time causes the decrease of the of the piston velocity v. And in the opposite way the increase of  $V_{A0}$  increases the velocity v. The comparison is shown in Table 3.



Fig. 6 Influence of  $V_{A0}$  on the pressure in the gas cylinder  $p_A$ 

This result is explained by graphs in Fig. 6. The character of the flow of gases between the channel and the gas cylinder (in both directions – from the channel into the cylinder and from the cylinder into the channel ) results into the increase of the area bellow the curves  $p_A = f(t)$  i.e. the increase of the impulse of gases acting on the piston. The reason of this fact is mainly in the prolonged filling of the gas cylinder i.e. in the prolonged period  $p_C > p_A$  in the same way like it was mentioned in chapter 2. For variants taken into consideration the comparison of mentioned time of filling the cylinder with the resultant value of the velocity at the time t = 4 ms for different values of  $V_{A0}$  is in Table 4.

### Dependence of the period pC > pA and piston velocity on the initial volume V<sub>A0</sub>

Table 4

| Value of $V_{A\theta}$ | Time of the period $p_C > p_A$ | Piston velocity at <i>t</i> = 4 ms |
|------------------------|--------------------------------|------------------------------------|
|                        | [ <b>s</b> ]                   | [m.s <sup>-1</sup> ]               |
| $0.8 V_{A0}$           | 0.0010                         | 6.91                               |
| $V_{A0}$               | 0.0012                         | 8.04                               |
| $1.5 V_{A0}$           | 0.0018                         | 10.87                              |

## 5. Influence of the cross-section of the piston rod gap $S_{GA}$

The last design characteristics of the gas system is the cross-section of the gap between the piston rod and the casing. During the function of the system the propellant gases flow through this gap from the gas cylinder into the atmosphere. This causes a loss of impulse on the piston and decreases the resultant velocity of the piston v. The comparison of these velocities corresponding with different values of the cross-section  $S_{GA}$  is in Table 5.

| Values of change | ł velocity v in | t = 4 ms at the | change of $S_{GA}$ |
|------------------|-----------------|-----------------|--------------------|
|------------------|-----------------|-----------------|--------------------|

| Changed S <sub>GA</sub> | ⊿ S <sub>GA</sub> [%] | <i>v</i> [m. s <sup>-1</sup> ] | <i>∆v</i> [%] |
|-------------------------|-----------------------|--------------------------------|---------------|
| $0.8 S_{GA}$            | - 20                  | 8.19                           | + 1.9         |
| $0.9 S_{GA}$            | - 10                  | 8.12                           | + 1.0         |
| 1.1 $S_{GA}$            | + 10                  | 7.97                           | - 0.9         |
| $1.2 S_{GA}$            | +20                   | 7.89                           | - 1.9         |

This table shows the decrease of the velocity v with the increase of the crosssection  $S_{GA}$  and the increase of v with the decrease of  $S_{GA}$ . But as shown in Table 5 the influence of this gap is very low.

## 6. Influence of the discharge coefficient $\mu_A$

The chapter 2. has discussed the influence of the orifice cross-section  $S_A$  on the function of the gas arrangement. The solution of this case was realized for the case in which the cross-section  $S_A$  is equal to the cross-section of the channel  $S_C$  as it is in the Czech aircraft cannon ZPL-20 ( $S_A = S_C$ ). Because the losses at the entrance of gases into the gas cylinder can be neglected, the value of the discharge coefficient has been chosen  $\mu_A = 1$ . But if the orifice cross-section is lower than the cross-section of the channel – i.e.  $S_A < S_C$  - the value of this discharge coefficient is  $\mu_A < 1$ . It belongs to the case when the cross-section  $S_C$  is suddenly decreased into  $S_A$  e.g. by means of an orifice plate. Because the mass flow into the gas cylinder from the channel  $G_A$  depends also on  $\mu_A$  it is necessary to discuss shortly its influence.

The equations for determination of the mass flow  $G_A$  through the cross-section  $S_A$  at the critical and sub-critical flow are [1], [2], [4]:

Table 5

#### - for the **critical flow** for k = 1.26 characterized by the condition

$$\frac{p_A}{p_C} < \left(\frac{2}{k+1}\right)^{\frac{k}{k-1}} = 0.553$$

(*k* is the ratio of specific heats)

the formula for the mass flow is

$$G_{ACR} = m_A \cdot S_A \left(\frac{2}{k-1}\right)^{\frac{k+1}{2(k-1)}} \sqrt{k \frac{p_C}{w_C}}$$

- and for the **subcritical flow** ( $p_A/p_C > 0.553$  for k = 1.26)

$$G_{ASCR} = \mathbf{m}_{A} \cdot S_{A} \sqrt{\left(\frac{2}{k-1}\right) \cdot \frac{p_{C}}{w_{C}}} \cdot \left[ \left(\frac{p_{A}}{p_{C}}\right)^{\frac{2}{k}} - \left(\frac{p_{A}}{p_{C}}\right)^{\frac{k+1}{k}} \right]^{0.5}$$

These formulae show, that the value  $\mu_A < 1$  really decreases the mass flow from the channel into the gas cylinder. So the influence of this discharge coefficient is the same as it was explained for the decreased value of the orifice cross-section in chapter 2. For better imagination about this influence of  $\mu_A < 1$  the result of the calculation in comparison with the case  $0.8S_A$  in Fig. 2 follows:

- in the case in Fig. 2 is  $\mu_A = 1$  and for time 0.004 s is the velocity  $v = 11.09 \text{ m.s}^{-1}$ ,
- for the case  $\mu_A < 1$  is  $\mu_A = 0.9$  and for the same time the velocity v = 13.11 m.s<sup>-1</sup>.

That means: the **10% decrease** of  $\mu_A$  causes the **18.2% increase** of the piston velocity v.

#### 7. Conclusion

From previous discussion of the influence of individual design characteristics of the gas arrangement on the piston velocity v (for pyro-recocking system according to Fig. 1) it is possible on the base of realized calculations to mention following conclusions:

- If the cross-section of the cylindrical channel  $S_C$  equals to the **cross-section of the** gas port  $S_A$  (i.e. the gas flows into the gas cylinder without any throttling) the

discharge coefficient is  $\mu_A = 1$  and any decrease of  $S_A$  causes the increase of the velocity v. The percentual difference of v is nearly twice greater than the percentual difference of  $S_A$ .

- The change of the **acting area of the piston**  $S_p$  causes the change of the piston velocity v in the same direction (the increase of  $S_p$  causes the increase of v). The percentual difference is nearly the same for both characteristics.

- The decrease of the **initial volume of the gas cylinder**  $V_{A0}$  causes the decrease of v and its increase causes the increase of v. The percentual change of v is less than the percentual change of  $V_{A0}$ . The ratio of both differences  $\Delta v / \Delta V_{A0}$  was nearly 0.7 (see Table 3).

- The increase of the **piston rod gap**  $S_{GA}$  decreases slightly the piston velocity v (its decrease increases v), but the influence of this design characteristics is practically neglegeable.

- The decrease of the **discharge coefficient**  $\mu_A$  causes the increase of v in similar way as it is mentioned for  $S_A$ .

These results can be utilized when designing the pyro-recocking system or when the change of an existing system e.g. in case of the necessity to increase or decrease the velocity of the gas piston v. It is possible to recommend three design characteristics  $S_A$ ,  $S_p$  and  $V_{A0}$  for the utilization. In case of the redesign of an existing system it seems to be the most convenient the change of the initial volume of the gas cylinder  $V_{A0}$  because its change can be simple. All mentioned design characteristics can be utilized when designing a new pyro-recocking system.

#### References

- PLÍHAL, B., POPELÍNSKÝ, L.: Solution of the Pyro-recocking System of the Automatic Cannon, Advances in Military Technology (AiMT) 1/2007, University of Defence
- [2] ALLSOP, D. F., POPELÍNSKÝ, L., BALLA, J., ČECH, V., PROCHÁZKA, S., ROSICKÝ, J.: Brassey's Essential Guide to MILITARY SMALL ARMS : London, Washington: Brassey's, 1997. p. 361. ISBN 1 85753 107 8
- [3] PLÍHAL, B., POPELÍNSKÝ, L.: Theory of the Automatic Cannon Pyro-Recocking System, 8<sup>th</sup> Symposium on Weapon Systems, Brno 2007
- [4] POPELÍNSKÝ, L.: Využití plynů v mechanismech zbraní [Utilization of Gases in Weapon Mechanisms] [Doctor Dissertation Work] Brno: ZVS-VVÚ and Military Academy in Brno, 1990, p. 247

## **Introduction of Author:**

POPELÍNSKÝ Lubomír, Prof., Dipl. Eng., DrSc., emeritus professor of University of Defence, Department Weapons and Ammunition, scientific orientation: theory and design of automatic weapons, testing of weapons. E-mail: lubomir.popelinsky@unob.cz.