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Abstract:  

An approach of qualitative optical flow processing for indoor object recognition based 

on planar attributes is presented. The qualitative processing is performed under hierar-

chical segmentations of optical flow vectors. The proposed solution for indoor object 

recognition is undertaken from identifying planar and atilt properties of optical flow 

images. The advantages of the proposed solutions are the use of much simpler arithmetic 

to obtain more 3D details about indoor objects. 
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1 Introduction 

According to [1], the fourth revolution is a new era in which industry will deal with 
technologies like Robotics, Automation, Artificial Intelligence (AI), and others. Since 
2011, the concept of industrial revolution 4.0 has gained popularity and inspired many 
scientific studies in robotics becoming smarter and closer to human thinking.  

In robotics, mobile robot plays a very important role in many fields; not only in-
dustrial robots [2], but also agricultural [3], medical [4], and other service robots [5]. 
Mobile robots are required to move around the environment map, locate and plan the 
route between locations. Some of them have built-in cameras to handle mapping, plan-
ning, localizing and avoiding obstacle issues. There are many pairs of distinctly 
independent issues such as indoor [6] and outdoor [7] navigations, structured [8] and 
unstructured [9] environments, qualitative [10] and quantitative [11] image processing, 
metric [12] and topological [13] reconstruction. They may intertwine in specific re-
search contexts.  
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Normally, for working in indoor environment, vision-based mobile robots have to 
cope with both structured and unstructured objects. Therefore, reconstructing typical 
geometrical models of the structured environments and dealing with obstacles in nar-
row spaces are the most important problems for indoor navigation. According to [12], 
vision-based depth reconstruction is a challenging problem extensively studied in 
computer vision but still lacking universal solution. Furthermore, reconstructing depth 
from single image is particularly valuable to mobile robotics as it can be embedded to 
the modern vision-based simultaneous localization and mapping methods providing 
them with the metric information needed to construct accurate maps in real scale. Es-
pecially, a number of optical flow-based solutions have been developed for vision-
based robot navigation, e.g. [14] and [15]. These approaches, however, use complex 
computations based on quantitative (metric) decision making implementations. 

To reduce complex computations, some other approaches propose qualitative so-
lutions for optical flow processing to reconstruct situations, e.g. [16] and [17]. The 
limitations of these solutions are poor recognition of situations and infirm robustness 
to image noise of the working environment. Some others can find out obstacle details 
from the optical flow [15, 18] or indoor object recognition [19, 20]. These approaches, 
however, are not able to detect both indoor landmarks and obstacles simultaneously. 

In this study, a solution of qualitative optical flow processing for indoor object 
recognition based on planar attributes is performed under hierarchical segmentations 
of optical flow vectors. 

The proposed solutions are the use of much simpler arithmetic, the consumption 
of less computing time, and especially the recognition of more 3D details about indoor 
objects in the working environment.  

The paper is organized as follows: Firstly, a vision-based mobile robot control 
system is briefly introduced; after that, the proposed solution of topological recogni-
tion of planar attribute-based structures is deeply focused on; finally, the experimental 
results of the qualitative optical flow processing are analyzed.  

2 Vision-Based Mobile Robot Control System 

2.1 Basic Concepts 

This research focuses on four basic indoor landmarks including walls, corners, doors 
and corridors because they have relatively stable shapes in most buildings.  

In 2D images, they are able to be illustrated by two planes as in the illustrations 
in Fig. 1 and they are named two-plane-built objects (TPO). The planar and atilt at-
tributes of the TPOs will be computed for structurally recognizing 3D objects from 2D 
images. 

The atilt attribute is presented via tilt angles. Tilt angle is defined as an angle φ 
between the line of sight (LOS) planes and flat object (FO) shown in Fig. 2. The plane 
LOS is a vertical plane ( ∠ ZOY) on the direct line between an observer (camera, 
robot) and a flat object. The plane FO is a vertical plane ( ∠ ZOX’) containing the flat 
object, where axes X and Y are perpendicular, but X’ and Y are not perpendicular. 

2.2 Modular Diagram of Optical Flow-Based Mobile Robot System 

To detect TPO, an optical flow-based object recognition in topological way is adopted 
rather than metric way in conventional solutions based on geometrical maps. The pro-
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posed topological solution for optical flow-based object recognition provides the re-
sults of optical flow-based recognition of distinctive objects that play the role of 
landmarks in navigation missions concerning path planning and obstructive objects. It 
is assumed that in the working environment, any object which is not used for path 
planning missions must be considered as an obstacle related to collision avoidance 
ones. 

 

Fig. 1 Arrangement of two planes to illustrate indoor objects:  

a) wall; b) corner; c) door; d) corridor 

 

Fig. 2 Definition of tilt angle 

The modular control system for vision-based mobile robot is implemented in 
a human way of thinking by using Fuzzy Inference Systems (FIS) at different levels of 
operation, as shown in Fig. 3. In the system, the optical flow processor performs func-
tions of image processing to deliver optical flow vectors. Specifically, a 2D-
correlation based block-matching approach for optical flow computation is used. 

Module OFFIS executes object recognition based on the translational components 
of optical flow, which contains 3D information. This module computes also the dis-
tance to objects based on the relationship with optical flow magnitude and linear 
velocity of the mobile robot. Outputs of the object recognition and distance calculation 
are obstacle distance, obstacle direction, TPO distance and TPO shape supported for 
subsequent modules PAPFIS and MOFIS. 

Module PAPFIS performs two missions of path planning including global and lo-
cal path planning. In the global one, PAPFIS uses user-defined information including 
a topological map and mission objective to calculate a sequence of waypoints consid-
ered as a global path or trajectory. Otherwise, in the local one, PAPFIS identifies 
a local goal and navigates mobile robot to the local goal. The outputs of PAPFIS are 
goal-oriented velocity and goal-oriented angle. 

a) b) c) d) 
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Fig. 3 Block diagram of optical flow-based mobile robot system  

Module MOFIS computes a behavior to help the mobile robot avoid collision 
during travelling. Additionally, MOFIS executes a kinematic fusion between two be-
haviors of collision avoidance and goal orientation. The fuzzy-based fusion allows the 
mobile robot to smoothly travel in complex and changing environments. The output of 
MOFIS is a set-point command including linear velocity and angular velocity provid-
ed for the locomotion of the autonomous mobile robot (AMR). 

2.3 Model Design of the Optical Flow-Based Object Recognition 

In this research, the optical flow-based object recognition is executed in qualitative 
way in module OFFIS based on hierarchical segmentations of optical flow fields. The 
block diagram of OFFIS is designed as shown in Fig. 4 with six sub-modules includ-
ing hierarchical segmentation, outlier removal filter, quadrant averaging, structural 
recognition, distance calculation, and situation determination. 

Firstly, the optical flow is hierarchically segmented into rectangle quadrants. 
Secondly, the outlier removal filter eliminates optical flow outliers overwhelming 
dynamic thresholds that are automatically generated from averaging amplitudes of 
optical flow vectors in examined quadrants (we will present the new solution of outlier 
removal filter in a next paper). After removing outliers, the retained vectors are aver-
aged and arranged in matrixes to identify planar and atilt properties that are necessary 
for reconstructing situation. Finally, a fuzzy-based situation determination is per-
formed to create the shape of encountered TPO object and position of obstacle. 

3 Solution of Planar Attribute-Based Structure Recognition 

3.1 Hierarchical Segmentation 

The whole field of optical flow is hierarchically segmented as the illustration in Fig. 5 
with three layers of segmentation. In layer 1, optical flow is segmented into four quad-
rants Q1, Q2, Q3 and Q4, illustrated in Fig. 5a. In layer 2, all of the layer-1 quadrants 
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are deeply segmented into layer-2 quadrants Q1i, Q2i, Q3i and Q4i, where i = 1…4, 
illustrated in Fig. 5b. In layer 3, all of the layer-2 quadrants are segmented into layer-3 
quadrants Q1ij, Q2ij, Q3ij and Q4ij, where i = 1…4 and j = 1…4, shown in Fig. 5c. This 
progress is similar to an activity of zooming in. 

 

Fig. 4 Block diagram of module OFFIS 

Mathematically, these quadrants can be arranged into the matrices as follows: 
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 (1) 

where ΩI, ΩII, and ΩIII are matrices of average amplitude of optical flow vectors in 
layer-1 quadrants, layer-2 quadrants, and layer-3 quadrants, respectively. 

Additionally, to detect position of obstacle, it is zoomed in only the quadrant(s) 
concerning the obstruction that owns the biggest average amplitude.  

For example, in the situation shown in Fig. 6a, quadrant Q3 covers the nearest ob-
stacle. It means that the average amplitude of Q3 is the biggest one. Therefore, 
a further segmentation is executed in quadrant Q3 to obtain four layer-2 quadrants Q31, 
Q32, Q33 and Q34 like Fig. 6b. By relative comparing the average amplitudes of the 
layer-2 quadrants, it is determined that quadrant Q34 contains the nearest part of the 
obstacle. For this reason, quadrant Q34 will be intensely segmented into four smaller 
patterns called layer-3 quadrants Q341, Q342, Q343 and Q344 as in the illustration in 
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Fig. 6c. After segmenting into three layers, it is possible to exactly identify position of 
the obstacle in (8 × 8) matrix ΩIII. 

 

Fig. 5 Hierarchical segmentation in three layers 

a) layer-1 segmentation, b) layer-2 segmentation, c) layer-3 segmentation 

 

Fig. 6 Hierarchical segmentation for identifying obstacle position: 

a) layer-1 quadrants, b) layer-2 quadrants, c) layer-3 quadrants 

3.2 Planar Attribute Identification 

Planar attributes are identified by comparing average amplitudes of two adjacent quad-
rants. There are two kinds of plane: vertical plane and horizontal plane. Vertical plane 
formed between two adjacent quadrants Qi and Qj in a column of the matrices Ω in 
equation (1). Vertical plane is defined as 

 U U

U U

1
vplane( , )

0
i j

i j
i j

Q Q
µ µ
µ µ

⇔ ≈
=  ⇔ ≠

 (2) 

where µUi and µUj are U-axis-projected average amplitudes of optical flow vectors in 
the two vertically adjacent quadrants. 

a) b) c) 
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Horizontal plane is formed between two adjacent quadrants Qi and Qj in a row of 
the Ω in Eq. (1). Horizontal plane is defined as 

 V V

V V

1
hplane( , )

0
i j

i j
i j

Q Q
µ µ
µ µ

⇔ ≈
=  ⇔ ≠

 (3) 

where µVi and µVj are V-axis-projected average amplitudes of optical flow vectors in 
the two horizontally adjacent quadrants. 

If we compute all vertical and horizontal planes on matrices ΩII and ΩIII, we have 
respectively matrices vplaneL2, hplaneL2, vplaneL3, and hplaneL3: 
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3.3 Atilt Attribute Identification 

The tilt angle of a plane is calculated by the following equation 

 V
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V
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i j

j

Q Q k
µ
µ

=  (8) 

where kTilt is a multiplier defined by the user to map tilt value to fuzzy range, e.g. 
[0, 1]. 

Using Eq. (8) to compute tilt angles on the two first and two last columns of the 
matrix ΩII and ΩIII, the matrix tiltL2 and tiltL3 are respectively defined as follows 
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4 Topological Recognition of Indoor Objects 

4.1 Rough Topological Structures of Indoor Landmarks 

Indoor landmarks are objects that have the ability to visually recognize the context of 
the surrounding context and determine its relative position in that context. In this re-
search, four typical indoor landmarks are considered including doors, corners, 
corridors, and floors as mentioned in section 2.1. 

The structural recognition is executed in a topological way by comparing the av-
erage amplitudes among the quadrants to identify the nearest quadrant, then using 
planar attributes to identify the nearest area, and finally masking the nearest area by 1 
and the others by 0. 

The rough structural recognition is performed on matrices ΩII, vplaneL2 and 
hplaneL2. Rough structural recognition is executed on layer 2 via three steps: 

• comparing the layer-2 quadrants 1..4ij jQ =  of a layer-1 quadrant Qi from each 

other to determine the closest quadrant with the biggest average µ ijmax, 

• computing ( )( )2vplane ,ij i j
Q Q +  and ( )( 1)hplane ,ij i jQ Q +  to localize the closest 

area containing the closest quadrants, 
• masking the closest area by 1 and the others by 0.  

For example, the rough structural recognition of the situation illustrated in Fig. 7 
is processed as the following:  

• comparing 1 1..4j jQ =  in Q1 to figure out Q11 is the closest one, 

• computing ( )11 13vplane , 1Q Q = , so the closest area in Q1 contains Q11 and Q13, 

•  masking the closest areas with 1, and others with 0. 
The process is looped for Q2, Q3 and Q4. Finally, the rough structure is formed as 

 Fig.7

1 0 0 1
1 0 0 1
1 0 0 1
1 0 0 1

 
 

=  
 
 

roughS  (11) 

4.2 Fine Topological Structures of Indoor Landmarks 

The fine structural recognition is performed on matrices ΩIII, vplaneL3 and hplaneL3. 
Similar to the rough structural recognition, the fine structural one is executed on layer 
3 also through three steps:  

• comparing the layer-3 quadrants Qijk of a layer-2 quadrant Qij from each other 
to determine the closest quadrant with the biggest average µ ijkmax, 

• computing ( )( )2vplane ,ijk ij kQ Q +  and ( )( )1hplane ,ijk ij kQ Q +  to determine the 

closest area containing the closest quadrant,  
• masking the closest area by 1 and the others by 0. 

E.g., the matrix of fine structure recognition in the situation illustrated in Fig. 8 is 
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 Fig.8
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⋯ ⋯

 (12) 

Finally, the matrices of rough and fine structure are supported for the subsequent 
module to determine shape of the encountered TPO and position of obstacle. 

 

Fig. 7 Coping with a door  Fig. 8 Coping with a corridor and an obstacle 

5 Experimental Results  

Experiments have been performed in a real office environment under realistic condi-
tions. The mobile robot used for all experiments is named IfAbot using a digital 
camera Logitech C310 HD with 1 280 × 720 screen resolution as the main sensor. 
Fig. 9 illustrates a scene of the experimental office environment. 

Optical flow  
Processor 

GPU 

set-point  
robot direction 

optical flow field 

camera images 

NAVIGATION SYSTEM 

IfAbot 

Behavior-based controller 
OFFIS 

 

Fig. 9 Control system and scene of the experimental environment  

Optical flow field for each image pair has been produced by a GPU NVIDIA Ge-
Force GTX 260 1.24 GHz through a 2D correlation block matching algorithm with 
segment size 32 × 32 pixels. The size of optical flow vectors of each image is 16 × 16 
(which is actually of low density) resulting in the following layer sizes: layer-1 quad-
rant contains 8 × 8, layer-2 quadrant contains 4 × 4 and layer-3 quadrant contains 2 × 2 
flow vectors. The software for the experiments is written in Matlab source code and 
executed on a computer Intel(R) Pentium(R) 4 CPU 3.40 GHz. 
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In the experiments, the real office contains 3D indoor objects such as doors Di, 
rooms Ri, and box-shaped obstacles along the corridor. The high level navigation task 
of IfAbot is to move from inside room R9 to the front of door D2 and avoiding all 
unknown artificial obstacles randomly arranged on the road. The colorful ground-truth 
and highlight images of the experiment are illustrated in Fig. 10. Especially, in Img4 
the robot coped with 3 obstacles including 01 person and 02 boxes. The person is de-
fined as the nearest obstacle due to its biggest average optical flow vector. 

 

Fig. 10 Ground-truth and highlight images of moving from R9 to D2  

The system for the recognizing of indoor object shapes based on Mamdani-type 
fuzzy membership functions is shown in Fig. 11. The system has 5 modules consisting 
of 01 rough classifier, 03 fine classifiers and 01 TPO decision module.  

The fuzzy rules of the rough classifier for recognizing of indoor object groups is 
listed in Fig. 12. The fuzzy rules of the fine classifiers for the recognizing of indoor 
object shapes are illustrated in Fig. 13. The TPO decision module selects a maximum 
value from the outputs of the fine classifiers to make the final decision about the TPO 
object to be recognized. 

Some indoor object interpretations of highlighted optical flow images taken and 
processed during the experiments are illustrated in Fig. 14. 

The experiment results demonstrate the successful use and reliable operation of 
optical flow-based pattern recognition using fuzzy logic in a real environment. 
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Fig. 11 Fuzzy-based recognition of indoor object shape 

 

Fig. 12 Fuzzy rules of rough classifier for recognizing of indoor object groups 

input of rough classifier 

Membership functions 

output of rough classifier 

input of fine classifiers 

output of fine classifiers 
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Fig. 13 Fuzzy rules of fine classifier for recognizing of indoor object shapes 

 

Fig. 14 Indoor object interpretations of highlighted optical flow images 

6 Conclusions 

This paper has presented the novel solution for indoor object recognition undertaken 
from identifying planar and atilt properties of optical flow images.  

Compared with classical approaches of optical flow-based indoor object detec-
tion, this approach has some advantages of simultaneous recognition of multiple 
objects in the same optical flow image including indoor landmark and obstacles. In 
particular, the proposed solution of topological recognition uses much simpler arith-
metic to obtain 3D details of the indoor objects. 
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