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Abstract:  

In the article, the joint analysis of the Bernoulli equations for compressible gas, varia-

tions of the supersonic flow parameters of the Prandtl-Meyer expansion fan and the 

hypothesis of aerofoil dynamic curvature were used to develop linear and nonlinear 

mathematical models describing the occurrence of transonic flutter of aerodynamic 

control surfaces of supersonic aircraft. The analysis of the obtained mathematical mod-

els confirms a theoretical possibility of the occurrence of transonic flutter of 

aerodynamic control surfaces of supersonic aircraft which is due to the peculiarities 

of the interaction of shock waves with the angular velocity of elastic bending oscillations 

of aerodynamic control surfaces.  
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1 Introduction 

Theoretical and experimental methods for studying classical (two-degree-of-freedom) 

flutter of aerodynamic surfaces in stationary and non-stationary flows have been de-

veloped quite thoroughly [1-4]. But so far, the problem of theoretical substantiation of 

the causes of intense oscillation of aerodynamic surfaces (“buzz”) of supersonic air-

craft at transonic flight speeds remains unsolved. Thus, the authors [2, p. 621] indicate: 

“It appears impossible to predict this phenomenon quantitatively by classical aerody-

namic theory, although the aileron’s motion is observed to be simply harmonic …”. 
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A large number of scientific works [2-18] are devoted to the study of these oscil-

lations, thanks to which three ranges of Mach numbers are determined where 

oscillations of aerodynamic surfaces are possible: 

• range “A” – subsonic speed, the oscillations are caused due to the separation of 

the boundary layer behind the shock waves, 

• range “B” – the aerofoil is in a mixed (subsonic and supersonic) airflow, the os-

cillations are due to the complex interaction of the shock waves with the 

oscillations of the aerodynamic control surfaces, 

• range “C” – supersonic speed, the oscillations are possible on aerofoils with in-

finitesimal thickness. 

The most dangerous are the oscillations of aerodynamic surfaces in the range 

“B”, the occurrence of which repeatedly led to severe flight accidents of supersonic 

aircraft. In this regard, some papers [6, 12, 13] refer to this phenomenon as the tran-

sonic flutter, a study of which is the purpose of the article.  

2 Background 

In the laboratory studies of oscillations of aerodynamic control surfaces it is noted that 

their occurrence is possible in the presence of only one degree of freedom [4, 5, 7], i.e. 

only at angular oscillations of control surfaces around their own axis.  

The flight studies have shown that oscillations occur in a very narrow range of 

Mach numbers when the shock waves are near the trailing edge of the control surface. 

It has also been proven that the amplitude of oscillations increases with decreasing 

altitude, i.e. this type of oscillations can be attributed to nonlinear self-oscillations, 

whose amplitude depends on the characteristics of aerodynamic surfaces and flight 

conditions [6]. Moreover, cases of destruction of structural elements of aircraft were 

observed at relatively small amplitudes of oscillations of the control surfaces 

(1.5°-2.0°) [6, 18]. 

In theoretical works, based on the results of numerical calculations, the occur-

rence of this phenomenon is associated with the presence of air compression [8] and 

with the formation of shock waves on aerofoil surfaces [9]. According to [10], based 

on the results of numerical solution of the Navier–Stokes equations, it was concluded 

that the occurrence of oscillation is due to the phase delay of shock wave motion with 

regard to the oscillations of the control surface, but the causes of the phase delay were 

not disclosed. 

In addition, as shown, for example, in [11], in the range of Mach numbers 

0.95-1.1, numerical methods of calculation can lose their stability; therefore, the re-

sults of the studies obtained with the use of these methods should be treated with 

caution. 

In [12], which is devoted to numerical methods for transonic flutter research, it is 

noted that, according to the results of experiments, in the near-sonic range of Mach 

numbers there is a significant decrease in critical velocity due to the motion of shock 

waves along the wing surface. Therefore, the study of this type of flutter using the 

methods of classical linear analysis of elastic oscillations is impossible. 

In [13], which is also devoted to numerical methods of flutter research, it is indi-

cated that flight safety of unmanned aerial vehicles in the range of Mach numbers 

0.95-1.05 can be more accurately ensured by the results of flight tests. 

The attitude to numerical methods is very categorically stated in [14], where it is 

indicated that all theoretical methods require simplification and reduction of the cost 
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of calculations. Consequently, specialists in aeroelasticity must reveal the physical 

essence of the studied processes. Only then will the widespread use of computers and 

flight data be beneficial and will not turn into black magic [14]. 

It follows that there is still no generally accepted model for transonic flutter, so 

theoretical studies of transonic flutter of aerodynamic control surfaces of supersonic 

aircraft still remain a relevant scientific and applied problem. 

The urgency of solving this problem is justified by the need to pre-assess the vi-

bration level of aircraft structural elements before flight tests and the requirements to 

ensure flight safety of supersonic aircraft. 

It also follows that the oscillations of aerodynamic control surfaces in the range 

“B” of Mach numbers can be attributed to the oscillations of elastic systems with one 

degree of freedom and can be represented by the mathematical model that was pro-

posed in [15]: 
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where δ(t) – the deflection of the control surface under oscillation; ϑ – the logarithmic 

decrement of oscillation without taking into account aerodynamic damping; ω – the 

angular natural frequency of oscillation; kJ – the distributed mass moment of inertia of 

the control surface; a ( ; )M δ δɺ  – the distributed hinge moment of the control surface 

caused by aerodynamic forces, including aerodynamic damping forces; 
с
( ; )М δ δɺ  – the 

distributed hinge moment of the control surface caused by shock waves. 

Based on the equation (9.12) suggested in [2, p. 532], the distributed hinge mo-

ment of an aerodynamic control surface caused by aerodynamic forces can be 

represented by the equation 
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where yCδ  is the derivative of the lifting force coefficient with respect to the angle of 

deflection of the control surface; ρ – the air density at flight altitude; V – the flight 

speed; bk – the aerofoil chord. 

3 Analysis of Hinge Moments Caused by Shock Waves 

When studying this phenomenon, the greatest difficulties arise in determining the 

hinge moments of the control surface caused by shock waves. In [16], these hinge 

moments were determined based on the mass flow rate equation, according to which 

the shock waves under oscillation of the control surface move to those intersections of 

the aerofoil chord where the thickness of the flow tube remains constant. 

For the proposed mathematical models of transonic flutter of aerodynamic con-

trol surfaces, as in [16], the excited hinge moment of the control surface, i.e. the 

moment caused by shock waves, is determined by the dynamic curvature hypothesis 

[1, p. 95]. According to this hypothesis, the aerodynamic characteristics of an oscillat-

ing aerofoil are equal to the aerodynamic characteristics of a steady aerofoil curved in 

such a way that the local instantaneous angles of attack are defined by the equation 
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where xc is the distance from the axis of rotation to the intersection of the aerofoil 

where the shock wave resides. 

In addition, in mathematical models of transonic flutter of aerodynamic control 

surfaces, the excited hinge moment of the control surface caused by shock waves is 

determined taking into account the conditions of their formation [17]. These condi-

tions are determined on the basis of the linearization of the Bernoulli equation for 

compressible fluid flow. 

According to the Bernoulli equation for compressible fluid flow, the relative 

pressure of local supersonic flow on an aerofoil surface is defined by the ratio [19]: 
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where P1 is the pressure of local supersonic flow on the aerofoil surface; P∞ – the 

pressure of undisturbed airflow; κ – the adiabatic index (for air κ ≈ 1,4); M∞ – the 

Mach number of undisturbed airflow; M1 – the local Mach number of supersonic flow 

over the aerofoil surface. 

Eq. (4) for thin aerofoils in a narrow range of Mach numbers of undisturbed air-

flow can be represented by an approximate linear equation, as was done in [17]: 

 1 11Р М М∞≈ − +  (5) 

It should be noted that for M∞ = Mcr Eq. (5) turns into the following equation: 

 1 cr crР Р М= ≈  (6) 

where crP  is the relative critical pressure of the local flow on the aerofoil surface, i.e. 

the relative pressure of the local flow on the aerofoil surface when M∞ = Mcr and 

M1 = 1.0; Mcr – the critical Mach number of the aerofoil, i.e. the Mach number of un-

disturbed airflow at which shock waves occur on the aerofoil surface for the first time 

and the Mach number M1 = 1.0. 

When specifying M1 = 1.0 and M∞ = Mcr, the approximate Eq. (6) can be obtained 

directly from Eq. (4). 

To determine how the relative pressure of local supersonic flow on an aerofoil 

surface depends on the Mach number of undisturbed subsonic airflow and the critical 

Mach number of the aerofoil, we use the fact that its adiabatic expansion begins at 

M∞ = Mcr when M1 = 1.0. The nature of this dependence in the range of Mach numbers 

of undisturbed subsonic flow from the Mach number M∞ = Mcr to the Mach number 

M∞ = 1.0 is also determined by the Bernoulli equation for compressible fluid flow, 

which in [17] is presented as: 
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At complete adiabatic expansion, i.e. at the number M∞ = 1.0, Eq. (7) is trans-

formed into the following linear equation: 

 ( )1 1 cr1 2 1Р Р Р∆ = − = −  (8) 
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Eq. (8) shows that with complete adiabatic expansion of local supersonic flow 

over an aerofoil surface, the maximum value of the pressure variation of the superson-

ic flow is twice its critical value. 

Eq. (7), taking into account Eq. (5) and Eq. (6) together with Eq. (4), within the 

above-mentioned range of Mach numbers of undisturbed subsonic flow can also be 

represented as an approximate linear equation: 

 1 cr2Р М М∞≈ −  (9) 

The acceptability of converting Eq. (7) into the approximate linear Eq. (9) can be 

confirmed in another way. Thus, in laboratory studies of this phenomenon [5, 7] it was 

proved that the magnitude of the pressure variation of local supersonic flow on an 

aerofoil surface increases monotonically with the increase of the Mach number of 

undisturbed airflow from M∞ = Mcr to M∞ = 1.0. This relationship, taking into account 

Eq. (6), can be described by an approximate linear equation: 
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Eq. (10) after the transformation can be expressed as Eq. (9). Eq. (9) and Eq. (10) 

at the Mach number M∞ = Mcr turn into Eq. (6), and at the Mach number M∞ = 1.0, 

taking into account Eq. (6), into Eq. (8). 

From the comparison of Eq. (5) and Eq. (9) the following expression can be ob-

tained: 

 ( )1 cr1 2М М М∞− ≈ −  (11) 

Eq. (11) is a condition for the transition of local supersonic flow to subsonic flow 

or a condition for the formation of shock waves on an aerofoil surface. 

Eq. (11) is also a condition for adiabatic expansion of local supersonic flow over 

the aerofoil surface. It shows that when the Mach number of undisturbed airflow in-

creases from M∞ = Mcr to M∞ = 1.0, the increase of the Mach number of local 

supersonic flow over an aerofoil surface is twice as large as the increase of the Mach 

number of undisturbed airflow. 

An analogue of the obtained Eq. (8) and Eq. (11) can be observed in the mechan-

ics of elastic systems. Namely, the deflection of an undamped elastic system under the 

step excitation is twice the deflection under the action of a static force. 

It also follows from Eq. (11) that the Mach number of local supersonic flow over 

the aerofoil surface cannot exceed the value 

 ( )1 cr1 2М М М∞≤ + −  (12) 

At the same time, as follows from the analysis of the properties of the Prandtl-

Meyer expansion fan, the Mach number of local supersonic flow is determined only by 

the angle of its deflection [19]. This approximate relation, as in [17], can be represent-

ed as 

 3
1 1 11.5 ( )М хϕ≈ +  (13) 

where φ(x) is the angle of deflection of local supersonic flow over the aerofoil chord 

of an aerodynamic surface. 

It should be noted that the error of the approximate Eqs (5), (6), (9), (11), and 

(13) for aerofoils with a relative thickness 0.04-0.08 does not exceed 1.0 %-2.0 %. 
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The analysis of Eqs (12) and (13) allows to substantiate patterns of interaction of 

shock waves with oscillations of control surfaces. 

Thus, the Eq. (13) shows that at φ(x) = 0 the Mach number of local supersonic 

flow over the surface of an aerofoil even under the condition M∞  > Mcr cannot exceed 

the value M1 = 1.0. When φ(x) > 0 the Mach number M1 increases and the intensity of 

the shock waves also increases, but the value of the Mach number M1 cannot exceed 

the value determined by the expression (12), even at large angles of deflection of the 

local supersonic flow. This can explain the fact of increasing intensity of shock waves 

with their motion forward to the axis of rotation of the control surface, which was 

observed in laboratory studies [7]. 

When the Mach number M∞ = const and the Mach number Mcr = const, then, as 

follows from the condition (12), the Mach number M1 of local supersonic flow over 

the surface of an aerofoil remains constant. Moreover, the Mach number M1 also re-

mains practically constant when the amplitude of oscillations of the control surface is 

low, i.e. under the condition 

 ( ) ( ) 0ix xϕ ϕ δ= ±  (14) 

where φ(xi) is the inclination angle of the tangent to the aerofoil in the cross section of 

the chord xi; δ0 is the amplitude of oscillations of the control surface. 

It can be concluded from the above that when a control surface is deflected by an 

angle the value of which is limited by Eq. (14) the shock waves move from the initial 

location back and forth to those cross sections of the control surface aerofoil chord 

where the deflection angle of the local supersonic flow is equal to the deflection angle 

in the cross section of the initial location. That is, the shock waves move to those cross 

sections of the chord where, according to Eq. (13), the Mach number M1 remains con-

stant. 

These patterns of the interaction of shock waves with the deflection of the aero-

dynamic control surface can be described as follows: 

• when shock waves move forward to the axis of rotation from the initial location 

on the control surface 

 ( ) ( )f 0x х хϕ ϕ δ= − ∆ +  (15) 

• when shock waves move back from the initial location on the control surface 

 ( ) ( )b 0x х хϕ ϕ δ= + ∆ −  (16) 

In Eqs (15) and (16) the following notations are introduced: ∆xf – the distance of 

shock waves motion forward from the initial location on the control surface; ∆xb – the 

distance of shock waves motion back from the initial location on the control surface. 

From the analysis of Eqs (13), (15) and (16) we see that to assess the nature of 

the interaction of shock waves with the oscillations of control surfaces it is necessary 

to know the geometrical characteristics of aerofoils, namely, the nature of variation of 

the inclination angle of the tangent to an aerofoil behind the chord. 

For an approximate quantitative evaluation of the geometric characteristics of 

aerofoils of modern supersonic aircraft, this relation can be represented as a linear 

equation 

 ( ) 0

1
ix х

b

ϕϕ ≈  (17) 
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where φ0 is the maximum inclination angle of the tangent to an aerofoil (near the trail-

ing edge); b1 – the distance from the line of the maximum thickness of the aerofoil to 

its trailing edge; xi – the distance from the intersection i of the aerofoil chord to the 

line of the maximum thickness of the aerofoil. 

Taking into account Eqs (17), (15) and (16) leads to the following relation: 

 0
f b 1

0

х х b
δ
ϕ

∆ = ∆ ≈  (18) 

According to the results of the experimental studies [6], it is known that the speed 

of shock waves motion during oscillation is 1.0 %-4.0 % of the speed of sound. That 

is, when a control surface oscillates, Eq. (18) can be represented as 

 ( ) ( ) ( )1
f b

0

; ;
b

х t х t tδ δ δ
ϕ

∆ = ∆ ≈  (19) 

The displacements of shock waves that are defined by Eqs (18) and (19) cause 

such location of the local flow on the control surface when a destabilizing hinge mo-

ment occurs, i.e. the moment that is directed towards the deflection of the control 

surface. 

The distributed value of this moment can be determined by the integral 

 ( ) ( )
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1 с L U с
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М х Р Р х хδ = −∫  (20) 

where xc is the distance from the initial location of shock waves to the axis of rotation 

of the control surface in the absence of oscillations; PU – the average pressure of the 

local flow on the part of the upper surface of the aerofoil where shock waves move 

along; PL – the average pressure of the local flow on the part of the lower surface of 

the aerofoil where shock waves move along; x1 – the minimum distance from the 

shock waves to the axis of rotation of the control surface during oscillation; x2 – the 

maximum distance from the shock waves to the axis of rotation of the control surface 

during oscillation.  

At small amplitudes of oscillations of control surfaces, which can include oscilla-

tions under transonic flutter, the integral (20) can be represented by the following 

approximate equation 

 ( ) ( ) ( ) ( )2 2
1 с с 2 1 с 2 1 2 1

1 1
;

2 2
М х Р х х Р х х х хδ ≈ ∆ − ≈ ∆ − +  (21) 

where ∆Pc is the average variation of local flow pressure on the lower and upper con-

trol surfaces on the part of an aerofoil where shock waves move along. 

Eq. (21) can also be represented as 

 ( ) ( ) ( ) ( ) ( ){ }1 с с с b с f с b с f

1
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2
М х Р х х х х х х х хδ    ≈ ∆ + ∆ − − ∆ + ∆ + − ∆     (22) 

Substituting Eq. (19) into Eq. (22) we obtain 

 ( ) ( )1
1 с с с
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b

М х Р х tδ δ
ϕ

≈ ∆  (23) 

From Eq. (23) it follows that the destabilizing hinge moment increases when the 

amplitude of oscillations of the control surface increases and when the distance of 
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displacement of the shock waves to the trailing edge of the aerofoil increases. This 

relation is observed only when the motion of shock waves is not limited by the trailing 

edge of the aerofoil. This limitation is determined by the following condition: 

 ( )с k b ;х b х tδ≥ − ∆  (24) 

On this part of the aerofoil chord, i.e. under the condition (24), the total dis-

placement of the shock waves forward and backward from the initial location 

decreases as follows: 

 ( ) ( )с k с f; ;l х b х х tδ δ= − + ∆  (25) 

Given Eq. (19), Eq. (25) can be represented as 

 ( ) ( )1
с k с

0

;
b

l х b х tδ δ
ϕ

= − +  (26) 

The distributed hinge moment of the control surface on this part of the location of 

shock waves can be represented by a relation similar to Eq. (21) with the following 

substitutions: 

 ( )1 k с
;х b l х δ= −  (27) 

 2 kх b=  (28) 

Substituting Eqs (27) and (28) into Eq. (21) and taking into account Eq. (26), we 

obtain the relation that describes the decrease in the destabilizing hinge moment at this 

part of the location of shock waves 

 ( ) ( ) ( )1 1
2 с с k с k с

0 0

1
;

2

b b
M х Р b х t b х tδ δ δ

ϕ ϕ
   

≈ ∆ − + + −   
   

 (29) 

The maximum value of the distributed destabilizing hinge moment of the control 

surface will be under the condition (24). Substituting it into Eq. (23) or Eq. (29) we 

obtain 

 ( ) ( ) ( )1 1
с с k

0 0

2
b b

М δ Р b δ t δ t
φ φ

 
≈ ∆ − 

 
 (30) 

The occurrence of destabilizing hinge moments of control surfaces at transonic 

flight speeds was repeatedly observed in laboratory studies [20, pp. 403, 404]. This 

phenomenon is called “reversal control”, but it causes only deflection, not oscillation 

of control surfaces. 

The oscillation of control surfaces is caused by the excited hinge moment. To de-

termine this moment, as mentioned above, it is necessary to use the hypothesis of 

dynamic curvature. 

In this case, to determine the pattern of interaction of shock waves with oscilla-

tions of control surfaces, Eqs (15) and (16), which define the conditions for interaction 

of shock waves with the deflection of control surfaces, should be represented taking 

into account the local instantaneous angles of attack, which are defined by Eq. (3): 

• when the shock waves move forward (to the axis of rotation) from the initial lo-

cation 
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• when the shock waves move backward from the initial location  

 ( ) ( ) ( ) ( )с b

b

х х
x х х t

V

δ
ϕ ϕ δ δ

+ ∆
 = + ∆ − 

ɺ
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In Eq. (31) and Eq. (32) the following notations are introduced: f ( )х δ∆ ɺ  – the 

displacement of shock waves caused by the deflection speed of a control surface, for-

ward from the initial location; b ( )х δ∆ ɺ – the displacement of shock waves caused by 

the deflection speed of a control surface, back from the original location. 

After the transformation of Eqs (31), (32), taking into account Eq. (17), we ob-

tain: 
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The interaction of the shock waves with the oscillations of the control surfaces, 

taking into account both their deflections and the speed of their deflections, is deter-

mined by the sum of Eqs (19), (33), and (34) 

 ( ) ( ) ( )
( )

с 11

0 0 1

;
х b tb

х t
V b t

δ
δ δ δ

ϕ ϕ δ
∆ = +

±

ɺ
ɺ

ɺ
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Visualization of Eq. (35) is presented in Fig. 1. 

The displacements of shock waves, which are defined by Eqs (33) and (34), 

change the location of the local flow pressure on the control surface, and as a conse-

quence, they cause an excited hinge moment, i.e. the moment acting towards the 

deflection of the control surface.  

The distributed excited hinge moment of the control surface is defined by an 

equation that is similar to Eq. (22): 

( ) ( ) ( ){ } ( ) ( ){ }1 с с с b с f с b с f

1
;

2
М х Р х х х х х х х хδ δ δ δ δ       ≈ ∆ + ∆ − − ∆ + ∆ + −∆       

ɺ ɺ ɺ ɺ ɺ  (36) 

Substituting Eqs (33) and (34) into (36), we obtain an approximate relation for 

variation of the distributed excited hinge moment dependent on the amplitude of oscil-

lations of the control surface and the location of the shock waves on the aerofoil 

chord: 
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1 с 2
2 2 2 2
0 1
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Р х b t
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 (37) 
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Fig. 1 The interaction of oscillations of shock waves with oscillations  

of the aerodynamic control surface of the keel 

From the analysis of Eq. (37) it follows that when the level of oscillations in-

creases or when the shock waves approach the trailing edge of the control surface the 

excited hinge moment increases. But this pattern is observed only when the motion of 

shock waves under oscillation of the control surface is not limited by the trailing edge 

of the aerofoil. As above, this limitation is determined by a condition similar to the 

condition (24): 

 ( ) ( )с k bх b хδ δ≥ − ∆ɺ ɺ  (38) 

On this part of the aerofoil chord, when the control surface oscillates, the total 

displacement of the shock waves back and forth from the initial location decreases, 

which can be described by the following equation: 

 ( ) ( )с k с f;l х δ b х х δ= − + ∆ɺ ɺ  (39) 

Substituting Eq. (33) into Eq. (39), we obtain a relation for variation of the total 

displacement of shock waves on this part of the control surface chord: 

 ( ) ( )
с 0

с k

0 1

;
х V

l х b
V b t

ϕδ
ϕ δ

= −
+

ɺ

ɺ
 (40) 

The distributed excited hinge moment of the control surface on this part of the 

location of the shock waves can be represented by a relation similar to Eq. (21) where 

the variables x1 and x2 are substituted by the following equations: 

 ( )1 k с
;х b l х δ= − ɺ  (41) 

 2 kх b=  (42) 

Substituting Eq. (41) and Eq. (42) into Eq. (21) and taking into account Eq. (40), 

we obtain a relation for the decrease of the distributed excited hinge moment on this 

part of the location of the shock waves: 
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 ( )
( )

2 2 2
2 с 0

2 с с k 2

0 1

1
;

2

х V
M х Р b

V b t

ϕδ
ϕ δ

 
 ≈ ∆ − 

  +  

ɺ

ɺ

 (43) 

The maximum value of the distributed excited hinge moment of the control sur-

face will be under the condition (38). Substituting the condition (38) into Eq. (37) or 

Eq. (43) and taking into account Eq. (34), we obtain 

 ( ) ( )
( )

1 02
с с k 2

0 1

2
b V t

М Р b

V b t

ϕ δ
δ

ϕ δ
≈ ∆

 + 

ɺ
ɺ

ɺ

 (44) 

It is the moment which causes intense oscillations of the aerodynamic control 

surfaces of supersonic aircraft at transonic flight speeds. 

From the results obtained above, it follows that for low-amplitude harmonic os-

cillations of control surfaces the distributed hinge moment caused by the shock waves 

can be represented as an approximate linear function, which is the vector sum of 

Eq. (30) and Eq. (44) simplified by linear functions [21]: 

 ( ) ( )2 0
с с k 1

0

; 2 1 sinМ Р b b t
δδ δ ω ω α
ϕ

≈ ∆ + +ɺ  (45) 

In Eq. (45) the following notations are introduced: 

• dimensionless angular frequency of oscillations of the control surface (the 

Strouhal number), 

 kb

V

ωω =   

• phase advance angle of the hinge moment in relation to the angle of deflection 

of the control surface 

 arctgα ω=   

4 Linear Model of Transonic Flutter 

From the analysis of Eq. (30), Eq. (44) and Eq. (45) it follows that the phase advance 

angle is due only to the presence of the excited hinge moment of the control surface. 

In flight studies of this phenomenon [6] it is noted that when the flight altitude 

varies, the oscillation frequencies, as a rule, remain practically constant and are equal 

to the natural frequencies of low tones of elastic oscillations of the control surfaces on 

the ground. That is, the values of the destabilizing hinge moments are equal to the 

values of the aerodynamic hinge moments of the control surfaces. Therefore, a linear 

mathematical model of the occurrence of transonic flutter of aerodynamic control 

surfaces of supersonic aircraft can be presented without taking into account these 

hinge moments, in the following form: 

 ( ) ( ) ( ) ( ) ( )2 3 2 1
k с k

k

1 3
2

π 16
y

o

b
t t t C Vb t Р b t

J V

δδ ωδ ω δ ρ δ δ
ϕ

 
+ + = − + ∆ 



ϑ




ɺɺ ɺ ɺ ɺ  (46) 

The linear mathematical model of transonic flutter of aerodynamic control sur-

faces (46) reflects the causes for the formation of excited hinge moments of the control 

surfaces and confirms the possibility of transonic flutter occurrence under the only one 
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degree of freedom, namely, when control surfaces oscillate around their axis of rota-

tion. 

5 Nonlinear Model of Transonic Flutter 

However, to assess the level of oscillation of the control surfaces it is necessary to 

consider the following. From the analysis of the results of experimental studies and 

Eq. (30) and Eq. (44) it follows that these oscillations belong to the type of nonlinear 

oscillations with limited amplitude.  

In addition, as follows from the above, the excited hinge moment of the control 

surface reaches its maximum value under the condition (38), when the value of the 

destabilizing hinge moment is lower than the value determined by Eq. (30). 

That is, the mathematical model of transonic flutter of aerodynamic control sur-

faces should take into account the nonlinear nature of the excited hinge moment, 

which is determined by Eq. (44), and the nonlinear nature of the destabilizing hinge 

moment, which should be determined by Eq. (29) taking into account the condition 

(38) but not the condition (24). This significantly complicates the development of 

a nonlinear mathematical model of transonic flutter of aerodynamic control surfaces of 

supersonic aircraft. 

But, as noted above, since under the occurrence of transonic flutter the oscillation 

frequencies of the control surfaces remain stable, then a nonlinear mathematical model 

of transonic flutter of aerodynamic control surfaces can be formed without taking into 

account the destabilizing hinge moments of the control surfaces, which are caused by 

the shock waves, and the hinge moments from the aerodynamic forces. 

On the other hand, in flight studies of supersonic aircraft a very high sensitivity 

of the level of oscillations of the control surfaces to various characteristics was repeat-

edly observed, first of all, to the geometric characteristics of aerofoils. Namely, the 

level of oscillations of control surfaces under the same flight modes of the same type 

of aircraft is not always the same. Therefore, when substantiating a mathematical 

model of transonic flutter of aerodynamic control surfaces of supersonic aircraft, it is 

necessary to take into account the nature of pressure variation behind the aerofoil 

chord, as follows from the analysis of Eq. (10) and Eq. (13). 

Given Eq. (8) and the almost linear nature of pressure variation behind the aero-

foil chord, which is confirmed by the results of laboratory studies [22], this relation in 

[17] is presented in the following form: 

 ( ) 0 c
0

1

1
1

2

b x
P x P

b

 +
∆ ≈ ∆ + 

 
 (47) 

where ∆P0 – the maximum value of variation of local supersonic flow pressure on the 

surface of an aerofoil when shock waves are located near the trailing edge of the aero-

foil and there are no oscillations; b0 – the distance from the axis of rotation of the 

control surface to the line of maximum thickness of the aerofoil of the bearing surface. 

Eq. (47) after the transformation can be represented as follows [17]: 

 ( ) ck
0

1 k

1
1 1

2

xb
P x P

b b

  
∆ ≈ ∆ − −  

   
 (48) 

In addition, from the analysis of the results of laboratory studies that are present-

ed in [22], it follows that the pressure behind the shock waves varies from the value P1 
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to the value P∞ approximately linearly. Therefore, the distributed value of the excited 

force caused by the shock waves can be represented as 

 ( ) ( ) ( )1 c 1 c

1
; ;

2
F x P x l xδ δ≈ ∆ɺ ɺ  (49) 

where 1( ; )cl x δɺ  – the total value of displacement of the shock waves back and forth 

from the original location. 

This displacement can be represented by the sum of Eq. (33) and Eq. (34): 

 ( ) ( ) ( ) ( )
( )

с 1 0
1 c f b 2 2 2 2

0 1

2
;

х b V t
l x x х

V b t

ϕ δ
δ δ δ

ϕ δ
= ∆ + ∆ =

−

ɺ
ɺ ɺ ɺ

ɺ
 (50) 

Taking into account Eqs (48)-(50), the distributed value of the force caused by 

the shock waves can be defined by the following equation: 

 ( ) ( )
( )

c 1 0ck
1 c 0 2 2 2 2

1 k 0 1

1
; 1 1

2

x b V txb
F x P

b b V b t

ϕ δ
δ

ϕ δ
  

≈ ∆ − −  
−   

ɺ
ɺ

ɺ
 (51) 

At small amplitudes of oscillations of control surfaces, which can include oscilla-

tions of control surfaces in case of transonic flutter, the relation between the 

distributed excited hinge moment of the control surface and the location of the shock 

waves and the amplitude of oscillations can be given as follows 

 ( ) ( ) ( ) ( )b f

1 c 1 c c; ;
2

x х
M x F x x

δ δ
δ δ

 ∆ − ∆
 ≈ +
  

ɺ ɺ

ɺ ɺ  (52) 

Substituting Eq. (33) and Eq. (34) into Eq. (52), we obtain 

 ( ) ( )
( )

2 3 3
c 1 0ck

1 c 0 2
2 2 2 21 k
0 1

1
; 1 1

2

x b V txb
M x P

b b V b t

ϕ δ
δ

ϕ δ

  
≈ ∆ − −  

      − 

ɺ
ɺ

ɺ

 (53) 

The maximum value of the distributed excited hinge moment of the control sur-

face is obtained by substituting the condition (38) into Eq. (53), taking into account 

the pressure variation of the local supersonic flow on the surface of the aerofoil: 

 ( ) ( ) ( )
( )

2
k 1 0k

1 0 2
0

0 1

1
1

2

b b V tb
M P t

V V b t

ϕ δ
δ δ

ϕ ϕ δ

 
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   + 

ɺ
ɺ ɺ

ɺ

 (54) 

As follows from the analysis of Eq. (54), the relation between the maximum val-

ue of the distributed excited hinge moment and the amplitude of oscillations of the 

control surface is nonlinear, so the mathematical model of transonic flutter of aerody-

namic control surfaces of supersonic aircraft is also nonlinear. The model, taking into 

account the above mentioned, can be represented by the following differential equa-

tion with a nonlinear right-hand side: 

 

( ) ( ) ( )

( ) ( )
( )

( )

2

2
3 k 1 0k
k 0 2

k 0
0 1

π

1 3 1
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16 2
y

t t t
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C Vb t P t t

J V V b t

δ

δ ωδ ω δ

ϕρ δ δ δ
ϕ ϕ δ

+ + =
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ɺɺ ɺ

ɺ ɺ ɺ
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 (55) 
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6 Conclusions 

The obtained mathematical models of transonic flutter of aerodynamic control surfaces 

of supersonic aircraft highlight the main physical processes caused by the interaction 

of shock waves with the oscillations of aerodynamic control surfaces and define the 

peculiarities of this phenomenon observed in laboratory and flight studies. They con-

firm the theoretical possibility of the occurrence of transonic flutter of aerodynamic 

control surfaces the oscillations of which can be represented by the oscillations of 

elastic systems with one degree of freedom. 

These mathematical models can be used for preliminarily assessment of the con-

ditions of occurrence of transonic flutter of aerodynamic control surfaces and the 

flutter’s characteristics when determining the safe conditions of flight operation of 

supersonic aircraft as well as analyzing the causes of flight accidents of supersonic 

aircraft. 

The possibility of approximate estimation of some characteristics of transonic 

flutter of aerodynamic control surfaces using the nonlinear mathematical model was 

confirmed by comparing them with the corresponding characteristics obtained in flight 

experiments [23, 24]. 
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