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Abstract: 

The radar matched filter is implemented in fractional Fourier domain (FrFD) and the 

required processing steps to perform the radar matched filter in FrFD are demonstrat-

ed. The complexity of the FrFD matched filter over the normal frequency transform 

matched filter is also investigated. The performance enhancements for using the matched 

filter in the FrFD are presented and the enhancement in the signal to noise ratio (SNR) 

output at different target SNRs are also described.  
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1 Introduction 

Radar matched filters (MF) in time domain (TD) are achieved by correlating the radar-
received signal with a time-reversed radar-transmitted signal. The correlation process 
in the frequency domain (FD) is executed by multiplying both signals (the received 
signal and replica signal) before transforming them back into the TD. 

In [1], a matched filters in the FT domain and the FrFT domain were investigated 
using the principle of stationary phase (PSP). The limitation of using matched filter in 
the optimum FrFT for a chirp was shown to be the dependence of the chirp shape in this 
domain on the chirp start time and chirp band width. In the special case where specific 
parameters can be estimated then a significant enhancement results when using matched 
filter in the optimum FrFT domain compared to the conventional FT approach. 

In [2], a generalized fractional matched filtering (GFMF) for estimating higher 
order chirp parameters with known time delay is presented. A novel method to mini-
mize signal to noise ratio (SNR) gain degradation due to the range-Doppler coupling 
effect of quadratic chirps is presented. Thus, a joint estimation of time delay and high-
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er order chirp parameters using generalized fractional envelope correlator (GFEC) are 
introduced. In [3], the concept of the matched filtering is generalized to the fractional 
Fourier case. The response of the matched filter in FrFD to chirp signals is analysed, 
and the sidelobe suppression method for matched filtering in the FrFD is considered. 

This paper investigates three methods, used to estimate the time delay Tst in or-
der, to design the MF in the FrFD. The complexity of the FrFD matched filter over the 
normal Fourier transform (FT) matched filter is also investigated. The performance 
enhancements in using the matched filter in the FrFD are presented and the enhance-
ment in the output SNRs at different target SNRs are also described. 

The paper is organized as follows: the mathematical formula for linear chirp ra-
dar received signal in the fractional domain is reviewed in section 2. In section 3, the 
linear chirp start time estimation is discussed. Implementation of the radar MF in FrFD 
is described in section 4. Discussion underlining the results and the complexity com-
parison for matched filter in both the FD and FrFD are demonstrated in section 5. 
A simulation result is presented in section 6 for FrFT and FT matched filter enhance-
ment at different SNRs. Section 7 concludes the paper. 

2 Mathematical Model for Matched Filter in FrFD 

 
The linear radar chirp received signal representation in the FrFD Sθ(ta) may be written 
as [1]: 
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where B is the chirp radar received signal amplitude in FrFD, rect[.] is rectangular 
function, ∆f is the chirp bandwidth, T is the radar pulse duration, ta is the variable in 
the ath FrFD, and θ = aπ/2 with a ∈ ℜ, uo represent the normalized variables for ta, τ is 
the shifted start time, and D = ∆f /T. 

Sθ(ta) in Eq. (1) is characterized by 
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thus the ath FrFD order depends on 2
o cosuτ θ . Because the MF implementation in the 

FrFD depends on the linear chirp shape in the same FrFD, thus MF design in FrFD 
requires knowledge about Tst which is an unknown parameter in radar application and 
it can be determined from  
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where Rt is the target range, c is the microwave propagation speed, approximate value 
3 × 108 m s−1.  

In the FD transformation of the FT MF, the signal is characterized by rect[f/∆f] 
which depends only on ∆f (known information). Implementation of the radar MF in 
FrFD. The design of a radar matched filter in the optimum FrFD is a more complex 
problem than the normal FT MF due to the need for estimating Tst. In radar applica-
tions, knowledge of the time position of the received useful signal is normally 
unknown. From FrFT properties, it is evident that a delayed signal will appear to have 
a shift and a modulation in the FrFD, both depending on the unknown delay of the 
received signal. This means that without the exact knowledge of the delay of the signal 
it is impossible to design a matched filter approach directly in the FrFD. Techniques 
for estimating this signal delay for radar-received signals Tst are presented in the fol-
lowing section. 

3 Methods to Estimate chirp start time 

Estimating the linear chirp start time Tst, which is the time of radar received linear 
chirp, depends on the target range. This estimation is essential in order to design the 
radar MF in the FrFD. Fig. 1 shows a simulated noisy target linear chirp received sig-
nal. The time delay Tst needs to be estimated in order to design the MF in the FrFD 
through using one of the following three methods: 

• FT MF,  
• Optimum FrFT of the received linear chirp, 
• Optimum FrFT of both the received and a reference signal. 

 

Fig. 1 Noisy linear chirp received signal 

Method 1: Fourier Transform Matched Filter 

Applying the MF formula in [1] to the noisy linear chirp radar received signal in Fig. 1, 
the signal output of the MF is seen in Fig. 2. In Fig. 2, a spike appears at the range bin 
150 (related to the target range) which is the start bin of the bins occupied by the re-
ceived linear chirp. This start bin Rbin (Rbin = 150) is used to calculate the target range Rt 
which is used to calculate Tst from Eq. (1). 
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The target range Rt is calculated from the range bin by adding the range at bin 0, 
Ro, to the distance dR within the time window as: 

 t o dR R R= +  (3) 

and Ro is defined by 

 
1o 0.5 wR cT=  (4) 

where 1 wT is the start of time window and dR is calculated from: 
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The calculated target range Rt from Eqs (3)-(5) is 156.975 km, thus the estimated 
Tst from Eq. (2) is 0.001 s. 

 

Fig. 2 Estimate Tst using MF 

Method 2: Optimum FrFT of the Received Linear Chirp 

Fig. 3 shows the radar received signal transformed to the optimum FrFD. A spike at 
sample 195 is seen in zoomed area of Fig. 3. The linear chirp Pp sample number (195) 
is used to calculate tst (the linear chirp start time sampling number) from Eq. (6) to be 
150 [4].  
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where ϑopt is optimum fractional angle ϑopt = aπ/2, Fstart is the chirp signal starting 
frequency, δf is the frequency resolution δf = Fs/N, and N is the number of signal sam-
ples. MT is the number of samples in the chirp signal with pulse width T. 

The sample number tst is multiplied by the sampling time Ts = 1/Fs to calculate Tst 
to be the same value 0.001 as in the previous method. 

Method 3: Optimum FrFT of Both the Received and a Reference Signal 

In Fig. 4, the radar received signal is transformed to the optimum FrFD as in the pre-
vious section, the target spike PpT in the optimum FrFD is observed to be located at 
195. A linear chirp signal with Tst = 0 is used as reference signal that is also trans-
formed to the optimum FrFD, the location of the reference signal spike PpR in the 
optimum FrFD is at sample 323. Tst is estimated from: 
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Fig. 3 Estimate Tst using Pp 

For the stating time window 1wT is 8.97 µs, and calculated optimum angle αopt is 
30.83° in Eq. (6) the estimated Tst is 0.001 s. 

 

Fig. 4 Estimate Tst using the difference in fractional bins 

4 Implementation of the Radar MF in FrFD  

The radar MF in FrFD is implemented as follows: The received signal, s(t) is trans-
formed to the optimal FrFD using apriori information from the transmitted linear chirp 
signal. This signal is convolved in the optimum FrFD with a replica signal. The mathe-
matical formula of this replica signal in the time depends on the known or estimated 
value Tst. The convolution process is achieved by applying FT for both signals in the 
optimum FrFD, multiplying the two, then applying the inverse Fourier transform (IFT).  

Zoom 

Reference signal Received signal 
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The required processing steps to perform the Radar MF in FrFD are described be-
low:  

• optimum transformation order estimation: starting from the transmitting signal 
parameters (known signal parameters), the optimum fractional order is estimat-
ed to transform the received signal to the optimum FrFD, 

• FrFT of the received signal: the optimum FrFT of the received signal is per-
formed to obtain a narrow peak detecting the presence of the received signal, 

• Tst estimation: the linear chirp start time Tst is estimated by one of the previous-
ly described methods. This information is required in order to generate 
a suitable replica, 

• replica generation in the FrFD: using the known or estimated value of Tst, a rep-
lica of the signal can be generated and its FrFT can be performed, 

• FT and matched filtering: to reduce the computational complexity of the 
matched filtering for the received signal and the replica optimum fractional ver-
sion, both are transformed into their relative FD before they have been 
multiplied together, 

• inverse Fourier Transform: IFT on the resulting signal after multiplying is per-
formed to produce the matched signal output in the optimum FrFD.  

 
The proposed optimum FrFD radar MF approach can be used for multiple targets de-
tection in the received signal. In the case of multiple targets, the same number of 
echoes of the transmitted signal as the number of targets illuminated from the system 
are present in the received signal. A FrFT of the received signal will show the pres-
ence of multiple peaks, each one representing a target. In order to apply the fractional 
MF, an estimation of the unknown time delay must be performed for each target due to 
the shift variance property, meaning that a different replica must be used to extract 
each target. The procedure to extract the targets is described as follows: 

• to use one of the previously described techniques to estimate the delay of the 
first echo with significant amplitude, 

• to generate the replica with the estimated delay and to apply the fractional MF 
obtaining the target detection, 

• to subtract the first echo from the received signal in order to perform the FrFD 
MF for the remaining targets. This subtraction can be performed by subtracting 
the replica used for the FrFD MF from the received signal. The residual re-
ceived signal will now contain another echo with a significant peak amplitude, 

• to iterate the above three steps (1-3) using the residual signal to extract the next 
target, 

• to add the output from the previous iterations to the output of each iteration to 
obtain the final detections. 

The procedure can be iterated a fixed number of times if the number of targets in 
the received signal is known, or a stop rule for the iterations can be used, i.e. the algo-
rithm can be stopped if the amplitude of the peak in the residual FrFT of the received 
signal is less than a certain threshold.  

5 Matched Filtering in Fourier Domain versus FrFD 

Performing the Matched filtering in the FrFD is advantageous over the regular FD in 
that it achieves a narrower main lobe, reduces the side lobe levels, and enhances the 
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SNR of the output. The linear chirp parameters (∆f, T, Fstart and Fstop), the linear chirp 
received time in the radar receiving window Tst, and the sampling Frequency Fs are the 
parameters that affect the extent of these enhancements. These improvements when 
using the proposed MF in the FrFD compared to the MF in the FD face an increased 
complexity requirement. To compare the Matched filtering complexity in both the 
Fourier and the FrFDs, it is required to know the complexity of fast Fourier transform 
(FFT) algorithm and FrFT algorithm that will be described in the following: 

• the complexity (complex multiplications) for an N-point FFT algorithm is 
(N/2)log2N (for N power of two), 

• various methods [5-12] are used to implement the FrFT algorithm. The com-
plexity of these algorithms is approximated to Nlog2N. 

Tab. 1 shows a comparison of complexity between the MF implementation in 
both FD and FrFD. It shows that the MF in FD implemented by the FFT of the re-
ceived radar signal multiplied by stored FFT replica of the received signal followed by 
inverse fast Fourier transform (IFFT) has a complexity approximated by Nlog2N (the 
same complexity as the FrFT). The implementation of the MF in FrFD starts with 
FrFT of the received radar signal multiplied by FrFT replica of the received signal (the 
mathematical formula of this replica depends on estimation of the start time Tst) fol-
lowed by inverse fast Fourier transform. Depending on this implementation, the total 
complexity for an MF in FrFD as seen in Tab. 1 is approximated by 2.5Nlog2N. Thus 
the complexity for implementing the MF in FrFD is approximately 2.5 times the com-
plexity of the MF in Fourier domain.  

Tab. 1 Matched filter complexity in the FD and FrFD 

Filter 

Comp. 
MF based FT MF based FrFT 

Implement 

by 

 

1 FFT 
1 multiplication 

1 IFFT 

2 FrFT 
1 multiplication 

1 IFFT 

Complexity 

 

1 N (multiplications) 
+ 20.5 logN N (1 FFT) 

+ 20.5 logN N (1 IFFT) 

1 N (multiplications) 
+ 22 logN N  (2 FrFT) 

+ 20.5 logN N (1 IFFT) 

≈ 2logN N  ≈ 22.5 logN N  

6 Matched Filter Outputs at Different SNRs 

Simulation results for a linear chirp signal (∆f = 30 Hz, Tst = 2 s with linear chirp dura-
tion 2.5 s, T = 5 s, and Fs = 100 Hz) in a noisy environment with different SNRs 
applied to both FT and FrFT MFs are shown in Fig. 5. This shows improvements in 
SNR output for the linear chirp signal for the two MFs. The results in Fig. 5 show an 
average improvement of approximately 3 dB by using FrFT MF compared to the FT 
MF for different input SNRs in the range of [−15: 20] dB. This gain in performance is 
accompanied with an increase in complexity, as analysed in section 5 for the imple-
mentation of MF in FrFD, as well as with the extra processing required for estimating 
the radar-received parameters. For different simulation scenarios (different Tst, ∆f, T, 
Fstart, Fstop and Fs), an SNR improvement is achieved using FrFT MF compared to 
using the FFT MF. 
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Fig. 5 SNR signals output using FT and FrFT matched filtering 

7 Conclusion 

Mathematical model based on PSP for MF in both the FD and the FrFD were investi-
gated in this paper. It is shown that using MF in the optimum FrFD depends on the 
linear chirp shape in this domain, on the linear chirp start time and linear chirp band-
width. The complexity of FrFT MF increases by approximately 2.5 times compared to 
the normal FT MF. An average improvement of approximately 3 dB is gained by using 
FrFT MF compared to the FT MF for different input SNRs in range [−15 : 20] dB in 
the considered case. Thus, matched filtering based FrFT can be used for target detec-
tion in linear chirp radars with the advantages of increasing the output SNR, reducing 
the side lobe power, which is applicable for multiple targets detection with the limita-
tion of estimating the target received time (Tst) and increasing complexity compared to 
FT based matched filtering. 

References 

[1] ELGAMEL, S.A., C. CLEMENTE and J.J. SORAGHAN. Radar Matched 
Filtering Using the Fractional Fourier Transform. In: Proceedings of the Sensor 

Signal Processing for Defence (SSPD 2010). London: IET, 2010. DOI 
10.1049/ic.2010.0242. 

[2] SAHAY, P., A. ANJARLEKAR, S.A. JAIN, P. RADHAKRISHNA and V.M. 
GADRE. Generalized Fractional Matched Filtering and its Applications. In: 
Proceedings of the National Conference on Communications (NCC). Kharagpur: 
IEEE, 2020. DOI 10.1109/NCC48643.2020.9055991. 

[3] ZHANG, F., R. TAO and Y. WANG. Matched Filtering in Fractional Fourier 
Domain. In: Proceedings of the Second International Conference on 

Instrumentation, Measurement, Computer, Communication and Control. Harbin: 
IEEE, 2012. DOI 10.1109/IMCCC.2012.9. 

[4] JACOB, R., T. THOMAS and A. UNNIKRISHNAN. Applications of Fractional 
Fourier Transform in Sonar Signal Processing. IETE Journal of Research, 2009, 
55(1), pp. 16-27. DOI 10.4103/0377-2063.51320. 

SNR FT matched filter 

SNR FrFT matched filter 



Advances in Military Technology, 2021, vol. 16, no. 2, pp. 345-353 353

[5] KOC, A., H.M. OZAKTAS, C. CANDAN and M. ALPER KUTAY. Digital 
Computation of Linear Canonical Transforms. IEEE Transactions on Signal 

Processing Transactions, 2008, 56(6), pp. 2383-2394. DOI 10.1109/TSP. 
2007.912890. 

[6] BULTHEEL, A. and H. MARTÌNEZ SULBARAN. A Shattered Survey of the 
Fractional Fourier Transform [online]. 2002 [viewed 2021-01-09]. Available 
from: https://limo.libis.be/primo-explore/fulldisplay?docid=LIRIAS1945897 
&context=L&vid=Lirias&search_scope=Lirias&tab=default_tab&lang=en_US&f
romSitemap=1 

[7] OZAKTAS, H.M., O. ARIKAN, M.A. KUTAY and G. BOZDAGT. Digital 
Computation of the Fractional Fourier Transform. IEEE Transactions on Signal 

Processing, 1996, 44(9), pp. 2141-2150. DOI 10.1109/78.536672. 

[8] ELGAMEL, S.A. and J. SORAGHAN. A New Fractional Fourier Transform 
Based Monopulse Tracking Radar Processor. In: IEEE International Conference 

on Acoustics Speech and Signal Processing (ICASSP). Dallas: IEEE, 2010, pp. 
2774-2777. DOI 10.1109/ICASSP.2010.5496208. 

[9] ELGAMEL, S.A. and J.J. SORAGHAN. Enhanced Monopulse Radar Tracking 
Using Filtering in Fractional Fourier Domain. In: Proceedings of the IEEE Radar 

Conference. Arlington: IEEE, 2010, pp. 247-250. DOI 10.1109/RADAR. 
2010.5494618. 

[10] CAPUS, C. and K. BROWN. Short-Time Fractional Fourier Methods for the 
Time-Frequency Representation of Chirp Signals. Journal of the Acoustical 

Society of America, 2003, 113(6), pp. 3253-3263. DOI 10.1121/1.1570434. 

[11] LEITH, E. Review of ‘Systems and Transforms With Applications to Optics‘ 
IEEE Transactions on Information Theory, 1972, 18(3), pp. 451-452. 
DOI 10.1109/TIT.1972.1054814. 

[12] AMEIN, A.S. and J.J. SORAGHAN. Fractional Chirp Scaling Algorithm: 
Mathematical Model. IEEE Transactions on Signal Processing, 2007, 55(8), 
pp. 4162-4172. DOI 10.1109/TSP.2007.895994. 

 


