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Abstract: 

The paper presents the mathematical model of the localization of electromagnetic 
sources in near-field region based on the sources localization mathematical model valid 
for the far-field region. The aim of the article is to show similarities and differences 
between both models with a deeper focus on near-field region model analysis using 
planar equidistant sensors array. Although both concepts in a high-level mathematical 
description apparatus look very much the same, in details the near-field region model 
reconstruction process is more complex with different constrains. Detailed covariance 
matrix analysis and statistics of the covariance matrix represents the main part of the 
article. In the conclusion, paper shows some model verification results for the localiza-
tion of single source, correlated sources and coherent sources. 
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1. Introduction 

This paper is an extension of work originally presented in New Trends in Signal Pro-
cessing 2018 [1]. The original article was focused on the sensors signal covariance 
matrix analysis of near-field region and on similarities and differences between near- 
and far-field models based on the “harmonics parameters retrieval” and consequences 
to the signal source parameters estimation. The sensors signals covariance matrix 
analysis was performed for the uniform linear sensor array. 

In this article, we present a general model description based on the planar equi-
distant sensor array, which gives a more complex view on the used algorithms and 
overall signal processing in comparison to linear sensor array. The paper presents 
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a common problem in the radio-signal processing from the planar sensors array. Ap-
propriate signal component selection according to defined sources parameters with 
following sensors array signal covariance matrix processing addresses signal sources 
parameters estimation (i.e. azimuth, elevation, distance, position). In our model, each 
sensors array contains omnidirectional sensors only, which are not interacting one to 
each other. General approach for the far- and near-field problem solution is the same, 
however particular steps are dependent on each simplified mathematical model includ-
ing constrains, which were used for the selected real scenario. The mathematical 
descriptive apparatus of the signal sensors covariance matrix (Eq. (2) and Eq. (6)) and 
the decomposition algorithms (Eq. (19) and Eq. (20)) in near and far-field models look 
very much the same for the uniform linear sensor array and for the uniform planar 
sensor array, too. The differences are in the structure of bearing vectors and matrixes 
forming the sensors signals covariance matrix, which makes the covariance matrix 
much more complicated and complex in its structure. 

The main reason for an accurate localization of electromagnetic interference 
(EMI) sources is to develop an effective technology for the evaluation and localization 
of EMI sources. Recently, electromagnetic compatibility (EMC) has played an im-
portant role in electronic devices design. One of the options for the EMI sources 
localization in the near-field region is to apply the methods and algorithms used for 
EMI sources localization valid for the far-field region.  

2. Model Definition 

2.1. Far-field Model 

All conventional and high-resolution models of the sources localization in far-field 
region are derived from the covariance matrix description and processing. They are 
well suited for digital signal processing with high accuracy and resolution. Practical 
utilization depends on algorithms of how to retrieve sources angular information 
(sources localization) from the covariance matrix of intercepted sensors signal com-
pound in classical methods (i.e. Beamforming), criterial and super resolution methods 
(i.e. MUSIC – Multiple Signal Classification) [2]. 

The basis for the localization in far-field model is the planar electromagnetic 
wave structure. The signal received from D harmonic signals sources sl by m,n-th 
sensor in the sensor array, defined with M sensors in x-axis direction and N sensors in 
y-axis direction, is given 
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where i is the signal sample index in time, d is the inter element sensor distance of the 
equidistance planar sensor array, �l is the wavelength of l-th source signal, φl is the 
azimuth angle of direction of arrival of l-th source, θl is the elevation angle of direc-
tion of arrival of l-th source, Ψl

m,n is the sensor pattern function value of m,n-th sensor 
for l-th source and vm,n represents additive noise for m,n-th sensor. 

The signals received by all sensors from planar sensor array create the signal ma-
trix with dimension M × N. The signal matrix is transformed according to particular 
algorithm into the vector x(i) with M ·  N × 1 dimension. The covariance matrix W 
created from the signal vector x(i) is defined as given  
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where s(i) is the sources vector, matrix A represents the delays with respect to the 
source l and m and n position of sensor, v(i) is the additive white noise vector with 
average power �2, Ws is the correlation matrix of the signal sources, 1 is the matrix 
with ones on main diagonal, symbol ( )H represents Hermitian transpose, E is the mean 
value operator. Required is matrix A, “directional” unique steering matrix created from 
signal “directional” vectors in column form defined by M × N sensor array elements 
positions and signals angles of arrival parameters for the time being unknown and it is 
given as 

 [ ]1 2, , , D=A a a a…  (3) 

where al for l-th source is defined as 
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The general precondition for this model is that the number of signals sources D is 
smaller than the number of sensors (M ·  N) of the planar equidistant sensor array 
[2, 3]. The precondition for the planar equidistant sensor array is that Ψl

m,n = 1 for each 
m, n and l. 

2.2. Near-field Model 

The basis for the localization in near-field model is Hertzian dipole theory. The gen-
eral condition for this model is that the distance between sources and the planar 
equidistant sensor array is in radiative near-field region defined in [1]. The l-th source 
is described by its coordinates [xl,yl,zl] and its dipole moment p0

l with components 
[px

l,py
l,pz

l] and the condition is zl = 0 and pz
l = 0. The signal received from D sources 

by m,n-th sensor in the sensor array, defined with M sensors in x-axis direction and N 
sensors in y-axis direction with respect to the far-field model, is magnetic intensity 
field function defined as 
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where rl

m,n represents the distance between m,n-th sensor position to the dipole centre 
of l-th source position, i is the signal sample index in the time, kl is the wavenumber of 
l-th source, ωl is the angular frequency of l-th source and Θl

m,n is the sensor pattern 
function value of m,n-th sensor for l-th source [4, 5]. 

Covariance matrix created from signals received by all sensors of the planar 
equidistant sensor array measured for selected polarization dimension {x} and {y} is 
in the symbolic form defined by [4] as 
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where P{y,x} is the vector of signals sources dipole moments, C{y,x} is the covariation 
matrix of sources signals and A{x,y} is the unique matrix of D sources signals potential 
vectors given by M × N elements sensor array positions and sources positions for the 
time being unknown and is defined in Eq. (3) and al for l-th source is defined as 
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where c is the speed of light, h is the distance between the measured object and the 
sensor array, �l is the wavelength of l-th source and rl

m,n is the distance between m,n-th 
sensor position to the dipole centre of l-th source. 

The general precondition for this model is that the number of sources signals D is 
smaller than the number of sensors in the planar equidistant sensor array and Θl

m,n = 1 

for each m, n and l. 

3. Covariance Matrix Analysis 

The mathematical models of covariance matrix W represented with Eq. (2) and Eq. (6) 
are equal in matrix representation, except the additional noise in Eq. (2). There a cou-
ple of methods how to estimate sources localization parameters from the covariation 
matrix W. These methods have different accuracy, resolution and stability since the 
problem is stationary stochastic in nature [2].  

For the next analysis, let us assume a general situation, that the sources signals 
s1(i),...,sG(i),...,sD(i), Q > D > G, where Q is the number of sensors in sensor array 
with M sensors along x-axis and N sensors along y-axis, G represents coherent or par-
tially correlated sources from whole D sources set with correlation b = [b1,...,bG]  

 ( ) ( )isbis ll 1=  (8) 

where l = 1,…,G. 
In the situation for the near-field model, the sources signals are represented by 

the elements px and py of dipole moments p not by s, but the conditions remain the 
same. 

3.1. Far-field Covariance 

Generally, the covariance matrix W in far-field has symmetrical Toeplitz structure for 
linear sensor array in the situation of non-coherent signals situation. The matrix W has 
Hermitian structure only in the situations with planar sensor array [6, 7].  

The covariance coefficient wu,v in the far-field situation is dependent on the angu-
lar values of each signal source and the distance between selected couple of sensors in 
planar equidistant sensor array for far-field situation. The mean value in the time from 
the covariance coefficient wu,v sample series is defined as  
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where d is the distance between sensors in the planar equidistant sensor array, α is the 
variable for substitution of sources signals angular parameters (azimuth and elevation) 
defined in Eq. (1), Bu and Bv represent the final spatial phase coefficient of coherent 
signals on selected sensor, δu,v = 1 for u = v, otherwise δu,v = 0.  

It is important to note that the covariance matrix W is the square matrix M · N × 
M · N, with respect to the particular planar to linear transformation algorithm of the 
sensors signal matrix array. When using the planar equidistant sensor array in non-
coherent situation, only the last row of Eq. (9) is non-vanishing and convergent. The 
main diagonal of matrix W consists of the equal real value of sensors power and all 
known algorithms for matrix Ws decomposition and signal sources estimation can be 
applied there. Due to M × N → M · N × 1 signal matrix transformation, matrix W loses 
its Toeplitz structure and remains only Hermitian. The spatial smoothing [8] before 
final reconstruction process is needed in coherent situation.  

The phasor distribution representation for planar sensor array is rather difficult. 
However, an example for the 7 element linear antenna array and one signal source is 
suitable in Fig. 1. It shows the correlation coefficient phasor w1,n distribution (first row 
of the correlation matrix W). The amplitude is constant and phase represents linear 
angular function as long as array is linear-equidistant.  

 

Fig. 1 Normalized correlation coefficient phasor w1,n distribution for the 7 element 
linear antenna array and one signal source in far-field model 

3.2. Near-field Covariance 

The covariance coefficient wu,v in the near-field situation is dependent on the distance 
between the position of each source defined by elementary dipole and the position of 
selected couple of sensors in planar equidistant sensor array. The dependence of dis-
tance is shown in Eq. (7).  
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The signal from one source acquired on the sensor with m,n-th position in the 
planar equidistant sensor array in polarisation dimension {x} is defined as 
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with the conditions pz = 0 and z = 0 are true and the distance rm,n is defined as 
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where m is the sensor position index along x-axis, n is the sensor position index along 
y-axis, h is the sensor to source plane distance, x, y and z are the coordinates of the 
source. 

The signal compound on the sensor with m,n-th position in the planar equidistant 
sensor array, taking into account only signals generated by the sources in the source 
plane with respect to the radiative near-field condition, is defined as 
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where Bm,n represents final correlation given by correlations b and selected m,n sensor 
spatial position and pl(i) is defined as 
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From the i-th signal sample at each sensor element of the whole sensor array, one 
may create matrix H(i) sample with the dimension M × N. The rectangular matrix shall 
be transformed into the column matrix M ·   N × 1, but it is important to note that the 
transformation algorithm has to be applied (from Eq. (6)) accordingly to the “localiza-
tion” matrix A in Eq. (7). 

The mean value from sample series of covariance coefficient wu,v is defined as  
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where ru, rv represents the distance between the sensor positon and the dipole centre of 
source and Bu and Bv represent the correlation given by correlations in b and selected 
u, v sensors spatial position. 

Eq. (14) can be rewritten into a simplified and more readable form  
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Eq. (15) consists of the same three analytical parts as Eq. (9): coherent – distrib-
uted source (upper row), correlated sources (middle part) and non-coherent sources 
(bottom part). 

The representation of the covariance phasor distribution in the near-field is suita-
ble for linear array only, similarly to far-field case. Fig. 2 shows the simplest situation 
for the correlation coefficient phasor w1,n distribution (first row of the correlation ma-
trix W) for the 7 element linear antenna array and one signal source. One may see non-
linear covariance coefficients functionality from the linear spacing of the sensors. 

 

Fig. 2 Near-field model correlation coefficient w1,n distribution for the 7 element line-
ar antenna array and one signal source with coordinates [0,0,0] 

In the coherent – distributed sources situation, the structure of W is rather more 
complicated. It is suitable to analyse the last part of Eq. (6), since the matrix C drives 
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the final W structure. It consists of the power of sources on the main diagonal and 
cross covariances between the sources. The matrix C can be written as 

 { } { } { }
H

y,x y,x y,x= ⋅C P P  (16) 

In case of two coherent sources with the dipole moment, components p1 = [p1
x, 

p1
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z and p2
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between {x}, {y} dipole components is equal to 0. Then the matrix C in polarization 
dimension {x} can be written as 
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All three parts of the Eq. (15) are valid and lead into the situation, where the ma-
trix W is non-linear with dumped periodic structure.  

From the comparison of far-field and near-field model we can see that in far-field 
model situation the matrix W has the periodical structure because of the sources sig-
nals angular parameters (azimuth and elevation) functionality. The matrix W in the 
near-field situation is not periodic and it has non-linear properties because the compo-
nents are not dependent on angular parameters but on the spacing of the sensors and 
sources. Additionally, in the near-field situation the matrix W does not have Toeplitz 
structure neither for linear, nor for planar sensor array, it is Hermitian structure only. 

The decomposition of W into A and C in non-coherent situation for the far and 
near-field situation can be performed via known algorithms (i.e. maximum beamform-
ing or MUSIC) [1, 2]. Coherent situation in far-field model can be solved with the 
same algorithms after “spatial smoothing” pre-processing, under specific periodical W 
structure condition [6, 8]. Unfortunately, in near-field model such “spatial smoothing” 
pre-processing is not applicable due to W non-linear properties.   

4. Covariance Matrix Statistics 

In the mathematical model for near-field situation there are some options on how to 
create the covariance matrix W. The first option is to measure the sensors signals for 
the particular frequency f and then create the covariance matrix W in the time T lim-
ited process. The second option is to measure magnetic intensity signals defined in 
Eq. (5) in the time T limited process, then apply the Discrete Fourier Transform and 
for particular frequency create covariance matrix W. Both options represent real meas-
urement process. 

In general form the covariance matrix W element is defined [4] as 

 ( ) ( ) ( ){ }H1
, , lim , ,T T

T
W u v f E H u f H v f

T→∞
= ⋅  (18) 

where for the first option u, v are sensors indexes, HT (u,f) is the measured signal for 
the particular frequency from u-th sensor and HT (v,f) is the measured signal for the 
particular frequency from v-th sensor. For the second option u, v are sensors indexes, 
HT (u,f) is the Fourier transform of T windowed signal hT (u,t) and HT (v,f) is the Fou-
rier transform of T windowed signal hT (v,t). 

There are some parameters that can affect the information contained in the covar-
iance matrix W. In the stationary stochastic situation, it is the total number of samples 
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(in time T) given by the number of the windows and number of the samples I in each 
window. The number of samples I is closely related to the sampling frequency fvz. 
After the signals measurement further DFT processing and the spectral characteristics 
estimation, the frequency resolution and accuracy are affected by the number of sam-
ples and the sampling frequency. It is defined as the ratio of the sampling frequency fvz 
to the number of samples I and improves with increasing I or decreasing fvz. The in-
formation contained in covariance matrix W for selected frequency component is thus 
dependent from the frequency detection accuracy given by DFT and consequently 
affects the accuracy of the source localization algorithm. For all poles algorithms i.e. 
MUSIC small deviations might be critical. 

Following examples show four situations how the number of samples and the 
number of sampling windows affect the covariance matrix W and singular values esti-
mations. All experiments were performed with the number of samples I = 1024 and 
frequency accuracy ± 12 MHz. 

In the single non-coherent source situation, the source is defined at the coordi-
nates [0,0,0] cm, f = 2.45 GHz, sensor array as 5 × 5 planar equidistant sensor array 
with d = 2.5 cm, sensor array to source planes distance h = 5 cm. The effect of the 
number of windows with the same sampling rate on the first five main diagonal ele-
ments of the matrix W is shown in Fig. 3a) and on the first three singular value of 
matrix W is shown in Fig. 3b). The statistics show results for 1 to 50 samples of win-
dow. Results show that the main diagonal elements of the matrix W are not affected by 
the number of window samples and that the singular values converge quickly into 
fixed values. Statistics shows, that it is only additive noise that influences noise singu-
lar values and noise subspace of the matrix W. For correct signal detection single 
sampling window with 1 024 samples is good enough. 

In the correlated sources situation, we selected two cases with wide and narrow 
band modulation models. Two sources are at the coordinates [3,3,0] cm and 
[5,2,0] cm. Signals are frequency modulated at the carrier frequency 2.45 GHz with 
different modulation parameters. The power spectrum magnitudes of two sources with 
frequency modulation are shown in Fig. 4. 

 

 

Fig. 3 The statistics results for x polarization of 5 × 5 planar equidistant sensor array, 
a) the first five main diagonal elements of W and b) the first three singular values of W  

The first model is with two narrow band frequency modulation signal sources. 
The effects of the number of windows with the same sampling rate on the information 
contained in the matrix W for two sources with narrow band frequency modulation are 
shown in Fig. 5. The effect of the number of windows with the same sampling rate on 
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the first five main diagonal elements of the matrix W is shown in Fig. 5a) and on the 
first three singular values of the matrix W is shown in Fig. 5b). The statistics show 
results from 1 to 50 samples windows each of 1024 samples of signals. The results 
show that the singular values converge into the fixed values; the first two singular 
values signify two sources on detected frequency and the main diagonal elements are 
not affected by the number of samples windows. The singular values statistics results 
show that greater number of samples is suitable for the exact sources localization in 
the narrow band correlated sources situation. 

 

Fig. 4 The power spectrum magnitude of two sources at the coordinates [3,3,0] cm 
and [5,2,0] cm with a) narrow band frequency modulation and b) wide band frequency 

modulation NFFT = 1024 

 

Fig. 5 The statistics results for x polarization of 5 × 5 planar equidistant sensor array, 
for two sources with narrow band frequency modulation a) the first five main diagonal 

elements of W and b) the first three singular values of W  

The second model is with two sources with wide band frequency modulation. The 
effect of the number of windows with the same sampling rate on the first five main 
diagonal elements of the matrix W is shown in Fig. 6a) and on the first three singular 
values of the matrix W is shown in Fig. 6b). The singular values converge into fixed 
values and the main diagonal elements are not affected by the number of samples win-
dows. The first two singular values signify two sources on detected frequency. For the 
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exact sources localization, the suitable number of samples can be lower than in the 
narrow-band frequency modulation situation. 

 

Fig. 6 The statistics results for x polarization of 5 × 5 planar equidistant sensor array, 
for two sources with wide band frequency modulation a) the first five main diagonal 

elements of W and b) the first three singular values of W 

For the coherent sources model two sources are selected, the first one at the coor-
dinates [2,2,0] cm and the second one at the coordinates [8,8,0] cm, f = 2.45 GHz. The 
effects of the number of window samples on the information contained in the matrix 
W for two coherent sources are shown in Fig. 7. The first five diagonal elements of the 
matrix W are shown in Fig. 7a) and the first three singular values of the matrix W are 
shown in Fig. 7b).  

 

Fig. 7 The statistics results for x polarization of 5 × 5 planar equidistant sensor array, 
for two coherent sources a) the first five main diagonal elements of W and b) the first 

three singular values of W 

Matrix W diagonal elements are not affected by the number of window samples 
and the singular values characteristics are similar to the single source case. Unfortu-
nately, the singular value distribution for the particular frequency matrix W (indicating 
the number of sources) indicates only single source situation, since sources are coher-
ent. 

5. Conclusions 

Two localization estimation techniques were selected for the decomposition of the 
covariance matrix W for the near-field verification model. The basic one is Beamform-
ing based on formula 
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 ( ) H
j lok lok,x y =P A WA  (19) 

and the second one is MUSIC with search formula 

 ( )MU H H
lok lok

1
,x y =P

A v vA
. (20) 

Classical Beamforming worked as expected with low accuracy and resolution, 
however was always stable. The MUSIC, based on the eigenvalue decomposition of 
the matrix with Toeplitz structure representing linear systems, worked for singular 
value decomposition of non-correlated sources and partially correlated sources well in 
non-linear near-field model too.  

The simulation results for the localization of the single source situation from 
Fig. 3 are shown in Fig. 8. 

 
Fig. 8 The simulation results for one single non-coherent source with the centre fre-

quency 2.4492 GHz with the estimation technique a) Beamforming, b) MUSIC 

Simulation results for localization of the correlated sources situation with two 
narrow band frequency modulation sources from Fig. 5 are shown in Fig. 9. All results 
(narrow and wide-band) showed very good localization results agreement with given 
sources parameters. 

 
Fig. 9 The simulation results for two correlated sources with narrow-band frequency 

modulation with the centre frequency 2.4492 GHz with the estimation technique 
a) Beamforming, b) MUSIC 



Advances in Military Technology, 2020, vol. 15, no. 1, pp. 149-162 161

Simulation results for the localization of the situation with two coherent sources 
from Fig. 7 are shown in Fig. 10. Figure shows only one signal source and wrong 
localization estimation parameters from the covariance matrix W at the frequency 
component 2.4492 GHz. 

 

Fig. 10 The simulation results for two coherent sources for frequency 2.4492 GHz 
with the estimation technique a) Beamforming, b) MUSIC 

Covariance matrix analysis showed similar features for both models (Eq. (9) and 
Eq. (15)) with the exception, that in near-field model the covariance matrix has Her-
mitian structure only and in the simplest – linear array model is neither periodical and 
has nor Toeplitz structure. Non-linear properties are defined by the non-linear func-
tionality of the spacing of the sensors and sources (Eq. (14)). Nevertheless, the high 
level mathematical description apparatus remains the same. The decomposition of W 
into the steering-localization matrix A and the signal sources matrix C in the non-
coherent situation for the far and near-field situation can be performed via the same 
known algorithms (i.e. Beamforming or MUSIC) [1, 2]. Defined parameters for the 
sampling frequency and the number of the samples gave satisfactory results. The re-
sults of the single source (Fig. 8) and two correlated sources (Fig. 9) in the near-field 
situations showed that the same localization estimation techniques can be used as in 
the far-field model. Unfortunately, in the near-field model for coherent-distributed 
signal sources situation “spatial smoothing” pre-processing, valid in the far-field mod-
el, is not applicable due to W non-linear properties. For such situation some different 
approach is needed. 
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