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Abstract:  

Centre-of-gravity (c.g.) of combat aircraft suffers significant lateral deviation due to 

asymmetric release of stores, leading to a highly nonlinear and coupled dynamics. Addi-

tional nonlinearity and coupling result when the aircraft attempts some 

supermanoeuvres under such conditions rendering nonlinear control implementation 

unavoidable. However, such controls depend on accurate onboard c.g information. The 

present paper proposes a novel neural network aided sliding mode based hybrid control 

scheme which does not require such an information. The neural controller is trained 

offline to compensate for the changed dynamics arising from the lateral mass asym-

metry, while the sliding controller is designed for the intended manoeuvres under the 

nominal situation. Cobra and Herbst manoeuvres are simulated for various lateral c.g. 

movements to validate the scheme. 
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1. Introduction 

Aircraft having lateral asymmetry in inertial and aerodynamic properties inherent in 

their structure have recently gained prominence in aircraft flight dynamics and control 

research [1-9]. In civil aircraft, such an asymmetry may generally arise due to asym-

metry in fuel consumption, partial structural damage in the wing etc. Initial works in 

this direction focused on civil aircraft only trying to maintain steady level flight under 

partial wing damage. However, significantly asymmetric dynamics may also occur in 

fighter aircraft because of asymmetric firing of stores. Leaving the dynamics asym-

metric has the advantage of not having to carry dummies or stores in identical pairs. 

Moreover, such an asymmetric fighter aircraft may be forced to execute some complex 
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and rapid manoeuvres because of mission and/or safety demands. Thus, the aircraft 

must be equipped so that they can complete the mission and/or safely return to the 

base even when these asymmetries have occurred. In many cases the asymmetry in-

duced due to the aforementioned reasons cannot be accurately identified and 

quantified. For example, identification of the asymmetry due to firing of stores needs 

online centre of gravity estimation in order for the controllers to be able to compensate 

for the changed dynamics, as considered recently in the literature [5-9]. Further, the 

changed dynamics is far more complex and control design based on them requires 

considerably more online computation power. The present paper attempts to remove 

such restrictions on online c.g. information, as well as increased computation power 

requirement altogether so that a fixed parameter control scheme can effectively handle 

a wide range of asymmetric c.g. variations resulting from arbitrarily asymmetric re-

lease of stores. 

During the standard fighter aircraft manoeuvres, the aircraft is usually required to 

pitch up to a very high angle forcing it to operate in the high angle of attack regions, 

i.e. regions far exceeding the stall limit. In such regions, the aircraft flight dynamics 

becomes predominantly nonlinear due to aerodynamic, inertial and trigonometric ef-

fects [10]. The situation further aggravates when additional nonlinearity and coupling 

between longitudinal and lateral-directional dynamics surface because of the lateral 

mass asymmetry. As a result, implementation of nonlinear control techniques becomes 

indispensable. Two well-known nonlinear controller design techniques, namely Non-

linear Dynamic Inversion (NDI) and Sliding Mode Control (SMC) have been 

conventionally applied to various aircraft flight control problems in the past [10-12]. 

In the present work, however, SMC is preferred because of its inherent robustness 

properties to structured uncertainties.  

In the proposed scheme, a sliding controller (denoted henceforth as the Nominal 

SMC) is designed for the symmetric aircraft (or the nominal aircraft) using the stand-

ard symmetric six degree of freedom (6-DOF) dynamics for the faster inner loop 

involving angular rates. This inner loop controller is aided by a Multilayer Feedfor-

ward Neural Network (MFNN) controller (as shown in Fig. 1) to take care of the 

changes in the dynamics arising from the lateral c.g. shift. The MFNN controller is 

trained offline considering a few c.g. movement values within a feasible range. The 

asymmetric aircraft equation of motion as derived in the literature [1, 2, 7] is exploited 

in generating the training data for the offline training of the neural network. Neural 

networks have been previously used in similar dynamic situations [2, 13, 14], however 

the proposed formulations therein contain an online neural network with update of 

weights being done online. The present controller, on the other hand, is a fixed param-

eter one and therefore does not demand additional online computation power. The 

slower outer loop containing the angular variables is predominantly kinematic in na-

ture and therefore it does not get directly affected by the changes in the dynamics from 

the mass asymmetry. Hence, the outer loop controller is only a nominal SMC control-

ler designed considering the nominal (i.e. symmetric) outer loop dynamics.  

Section 2 gives the details of the proposed hybrid control scheme. To validate the 

usefulness of the proposed controller formulation, two standard supermanoeuvres 

cobra and Herbst are considered in the present paper. In cobra, the aircraft suddenly 

pitches up to about ninety degrees or sometimes even more and then immediately 

comes down to the initial pitch within a few seconds. As a result, the aircraft suddenly 

brakes to a much lower velocity forcing the pursuing aircraft to overshoot [15]. In 

Herbst manoeuvre, the aircraft first pitches rapidly to a high angle of attack and there-
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after initiates banking at a high rate to quickly reverse the flight direction [16, 17]. In 

the present scenario of significant lateral asymmetry, Herbst manoeuvre is particularly 

relevant since the aircraft can at least abort the mission and safely return to the base. 

Simulation results showing the manoeuvre performance for these manoeuvres over 

a considerable lateral c.g. offset range are presented in Section 3. Section 4 concludes 

the paper.  

2. Neural Network Aided Hybrid Sliding Mode Control Scheme 

 

Fig. 1 Block diagram of the proposed closed loop control scheme 

Sliding Mode Control is a robust nonlinear controller design technique particular-

ly suitable for dealing with structured or parametric uncertainties [18-19]. This control 

approach is found to mitigate a wide range of uncertainties in the case of asymmetric 

aircraft [7-9]. However, the manoeuvre performance considerably deteriorates when 

the controller does not have an accurate information of the asymmetry. Since the angu-

lar and angular rate dynamics are timescale separated, usually two separate controllers 

are designed for them in an inner-outer loop architecture, as shown above in Fig. 1. 

The same architecture is retained in the present scheme with an additional aid coming 

from the neural controller in the inner loop. The 6-DOF equations of motion for 

asymmetric aircraft as given in the Appendix can be simplified as 
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where [Mx My Mz ]s
T and [Mx My Mz ]c

T denote the state and control dependent compo-

nents of the external moment vector, and  
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and [F1 F2 F3]T denotes the first and third terms combined on the right hand side of the 

force balance equation and [M1 M2 M3]T denotes the first three terms combined on the 

right hand side of the moment balance equation, as given in the Appendix. m' and I' 

are the post ejection mass and moment of inertia of the aircraft and [xcm ycm zcm]T de-

notes the location of the c.g. from the centre of the body frame. 

On the other hand, nominal dynamics for an aircraft is given by the usual 6-DOF 

equations of motion again given in the Appendix for reference. Now let the asymmet-

ric rotational dynamics in Eq. (1) be described as 

 ( ) ( )1x f x g x u= +ɺ  (4) 

 ( ) ( ) ( ) ( ){ }1 0 0x f x g x u f x g x u= + + ∆ + ∆ɺ  (5)  

 ( ) ( ) ( )1 0 0 ,x f x g x u F x u= + + ∆ɺ  (6) 

where the part ( ) ( ){ }0 0f x g x u+  represents the nominal or symmetric angular rate dy-

namics, control signal u = [Mx My Mz ]c
T , x1 = [p q r]T and x is the state vector. Clearly,  

 ( ) ( ){ } ( ) ( ){ }0 0( , )F x u f x g x u f x g x u∆ = + − +  (7) 

The aim of the neural network controller is to learn the difference in the nominal 

dynamics and the asymmetric dynamics, i.e. the ∆F(x, u) term for different levels of 

mass asymmetry in an offline manner. In order to make the controller independent of 

the store weight that is being fired or the amount of c.g. variation, a Multilayer Feed-

Forward Neural Network (MFNN) based controller is proposed. This approach is, 

indeed, appealing because of the excellent capabilities of the feedforward neural net-

works for adapting to various changes in its input parameters even if the 

dimensionality of the data to be learnt is too high. Following the formulations as pro-

posed in [8, 9], first an SMC controller is designed using the actual asymmetric 

dynamics. From this simulation, the ∆F(x, u) values are stored as per Eq. (7). These 

values are used for offline training of the MFNN controller.  

Let a fully trained three layer network (one input layer, one hidden layer and one 

output layer) with optimal weight matrices W and V represent the function ∆F(x, u) 

with some approximation error ε bounded as −εm ≤ ε ≤ εm. Therefore,  

 ( ) ( )T, , ,F x u x uφ ε∆ = +W V  (8) 

where ϕ is the activation function of the hidden layer and V is the weight matrix of the 
hidden layer; and W is the weight matrix of the output layer. Now, substituting Eq. (8) in 
Eq. (6), the asymmetric rate dynamics can be described as 

 ( ) ( ) ( )T
1 0 0 , ,x f x g x u x uφ ε= + + +W Vɺ  (9) 

As shown in Fig.1, the outer loop controller treats the body rates as the virtual 

control signals. The outer loop happens to be predominantly kinematic, therefore the 

mass asymmetry does not affect it much; it affects mostly the inner loop performance. 

Therefore, the neural controller is used to aid the inner loop SMC only so that the 
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∆F(x, u) part is compensated. Thus, the final control input to the plant representing the 

three moments about the three body axes is 

 NNSMC= + u u u  (10) 

It is to be noted that the SMC part in Eq. (10) comes from the nominal SMC as 

designed for the symmetric dynamics and it proceeds in the standard manner. For 

faster convergence to the sliding surface, a linear term is added to a discontinuous 

term in the reaching law. Hence the reaching law is given by 

 ( )1 2sgns s sη η= − −ɺ  (11) 

where η1 and η2 are positive constants and the sliding surface is s = 0 where s containing 
proportional and integral components is chosen to be 

 ( ) ( )1 1 11 1 dd ds x x k x x t= − + −∫  (12) 

where x1d denotes the desired profile of x1 and k1 is a positive constant. The sliding con-
troller output is computed as 

 
( ) ( ) ( ) ( )SMC 0 1 1 1d 1 1d 1 2

0

1
sgnu f x k x x k x s s

g x
η η = − − + + + + ɺ  (13) 

If the asymmetric dynamics were known to the SMC controller at each time step, 

then the control moment u would have been computed from 

 ( )
0

SMC 0 1 1 1d 1 1d 1 2= 
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x
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An estimate of the ∆F term, hereafter denoted as ∆̂F , is obtained from the neural 

controller. Therefore, the neural controller output is given by  

 

0

NN
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The estimation error in the MFNN controller ε is small and is handled by the 

nominal SMC controller. Therefore, the dynamics as seen by the nominal SMC is 

given by  

 
0 SMC01= ( )+ ( ) +gx f x x u εɺ  (16) 

For the chosen sliding surface as given in Eq. (12), 

 ( )1d 1 1 1d 1 1=ss s x x k x k x− + −ɺ ɺ ɺ  (17) 

Substituting xɺ from Eq. (16) and uSMC from Eq. (13) into Eq. (17) yields 

 ( )1 2= + sgn( )+ss s s sε η η−ɺ  (18) 

For stability of the sliding surface and for a minimum guaranteed convergence 

rate of the trajectory to the sliding surface, it is required that the following inequality 

is satisfied 

 ss k s≤ −ɺ  (19) 

where k is a positive constant. Eqs (18) and (19) yield the condition 
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 ( )1 2+ sgn( )+s s s k sε η η− ≤ −  (20) 

 
2

1 2+ +s s s k sη η ε≥ −  (21) 

From inequality (21) it is clear that for negative values of s, the worst scenario 

occurs when ε = + εm and for positive s, the worst situation arises when ε = −εm, εm 

being the norm bound on the approximation error. Clearly, if the constant η1 is chosen 

to satisfy the condition 

 1 m +kη ε≥  (22) 

then the inequality in (21) is always satisfied for all values of s and for any positive value 
of the parameter η2.  

To reduce chattering in SMC, the hard signum function is usually replaced with 

a saturation function having a small linear region, say ±b. Hence, Eq. (11) reduces to 

 1 2= sat( )s s sη η− −ɺ  (23) 

Substituting s from Eq. (12) in Eq. (23), 

 11 2 +  = sat( ) e k e s sη η− −ɺ  (24) 

where e represents the tracking error in the state variable x i.e. x1d – x1. Therefore, in the 
linear region of the saturation function, 

 1 1 2

1
e k e s s

b
η η+ = − −ɺ  (25) 

Substituting s from Eq. (12) in the right hand side of Eq. (25), 

 ( )1
1 2 1 +  = + de k e e k e t

b

η η − + 
 

∫ɺ  (26) 

Differentiating both sides of Eq. (26) once w.r.t. time yields 

 1 1
1 2 2 1 +  + +  + +  = 0e k e e k e
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The control parameters are chosen in such a manner that the above error dynam-

ics is sufficiently faster than the corresponding error dynamics for the outer loop. This 

is done to ensure that the inherent time scale separation between the inner and outer 

loops is retained.  

In the present scheme, suitable desired profiles for the angle-of-attack, sideslip 

angle and the bank angle i.e. α, β and µ are fed to the outer loop controller (as shown 

in Fig. 1) for executing the intended manoeuvres. The outer loop sliding mode control-

ler, which generates the desired body rates i.e. x1d, is designed in the conventional way 

neglecting the asymmetric dynamics altogether [7, 8]. Further, the control moments 

demanded from the controller are converted to control surface deflection commands 

through the standard pseudo-inverse control allocation method [10] and availability of 

full state feedback is assumed. 
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3. Simulation Results and Discussion  

To validate the proposed hybrid controller, in the present work, cobra and Herbst ma-

noeuvres are simulated considering various amounts of lateral c.g. variations. The 

amount of lateral c.g. variation is represented in terms of the mass of the store, which 

is supposed to be located at a fixed location of one third of the semispan from the 

fuselage centre line. Mass of the store is considered to be within the range from zero to 

1 100 kg at an interval of 100 kg. This represents a feasible range of lateral c.g. varia-

tions (of about 0 to 9 cm). This introduces a significant asymmetry in the 6-DOF 

dynamics of the aircraft and as reported in the recent literature [7, 8], the controller 

should be designed on the asymmetric dynamics if the desired manoeuvre performance 

is to be retained. This required the controller to know the actual c.g. location. Howev-

er, in the present scheme, neither of the neural and sliding controllers is fed any 

information about this c.g. shift. The manoeuvre durations considered are 6 s and 18 s 

for cobra and Herbst respectively. 

 

                                 
(a)                                                                        (b) 

Fig. 2 Rolling accelerations induced due to asymmetry from firing a 1 000 kg store:   

(a ) Cobra (b) Herbst 

To generate the training data set for offline training of the MFNN controller, first 

the SMC is designed using the asymmetric dynamic equations (as detailed in [7]) for 

three cases of store mass: 200 kg, 600 kg and 1 000 kg. In each case, from the simula-

tions, the ∆F(x, u) values are computed and saved (refer to Eq. (7)). Since the neural 

controller is designed for the inner loop, ∆F(x, u) basically has three angular accelera-

tion components. All the three data sets corresponding to three different store masses 

are used to train the offline neural network controller. One hidden layer is considered 

with 15 and 25 neurons for cobra and Herbst manoeuvre cases respectively. 

Training takes about 412 and 623 iterations respectively and the maximum toler-

ance for the mean square error is set 10 −5. Levenberg-Marquardt algorithm is used for 

training the network using the MATLABTM Neural Networks Toolbox [21]. Fig. 2 

shows fits for the rolling acceleration component induced when a 1 000 kg store is 

released. The ∆F(x, u) term contains pitch and yaw components also, however, their 

neural network fits are not shown for the sake of brevity. Moreover, the uncertainty is 
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predominantly in the rolling component. It is assumed that the store is released at 

t = 4 s and the manoeuvre is initiated at t = 5 s. 

The hybrid controller is validated for all twelve cases, i.e. for store mass ranging 

from zero to 1 100 kg at an interval of 100 kg. Fig. 3 shows simulation results for an 

intermediate case (i.e. a situation which is not considered for training the neural net-

work controller) when the aircraft executes the cobra manoeuvre after a 900 kg store is 

released. Time response for three controllers are compared: i) the Nominal SMC de-

signed neglecting the asymmetric dynamics completely; ii) Exact SMC designed using 

the asymmetric dynamics and iii) the proposed MFNN-SMC hybrid controller. The 

aircraft is commanded to pitch up to 90° within 3 s and then to come back to initial 

pitch in other 3 s.  

From Fig. 3 it can be readily observed that the performance of the MFNN-SMC 

controller is very close to the Exact SMC controller, while the Nominal SMC control-

ler performance is significantly inferior – the aircraft suffering wide lateral deviation 

in its trajectory and pitch angle going up to less than 80° instead of the commanded 

90°. The poor performance of the Nominal SMC controller implies that the asymmetry 

in the dynamics cannot be completely neglected (even though a robust controller like 

the sliding mode is used) while attempting such high performance manoeuvres auto-

matically. However, if the exact asymmetric equations are used to design the SMC 

controller, then c.g position should be fed to the controller. On the other hand, the 

proposed hybrid controller achieves almost identical performance level with no such 

need for the c.g. information. Moreover, the MFNN-SMC scheme is a fixed parameter 

control scheme as both the MFNN and SMC parameters are set offline. Simulations 

are tested for any arbitrary store mass in the range of zero to 1 100 kg and the same 

manoeuvre performance is found to be retained. Results for only one case are present-

ed here in Fig. 3. 

Fig. 4 shows the performance of the three aforementioned controllers for Herbst 

manoeuvre. The first plot in Fig. 4 shows the trajectory of the aircraft; from this fig-

ure, it is clear that the Nominal SMC controller completely fails to execute the 

manoeuvre as the aircraft flies west instead of south after the manoeuvre. The Exact 

SMC controller and the proposed MFNN-SMC controller performances are nearly 

identical - the aircraft reversing its flight direction nearly perfectly in either case. 

However, the computation time for the Exact SMC control scheme is about 30% high-

er than that of the proposed MFNN-SMC control scheme. The aircraft is assumed to 

possess conventional aerodynamic control surfaces and thrust vector controls in both 

pitch and yaw planes. All the aerodynamic and thrust control surfaces are limited by 

position and rate limits as given in the Appendix. For simulating the manoeuvres, the 

aircraft’s aerodynamic coefficients are considered to have a random uncertainty of 

± 10% about their nominal values in case of Herbst manoeuvre and ± 25% in case of 

cobra manoeuvre. Since the Herbst manoeuvre is much more demanding, a higher 

uncertainty level could not be handled by the sliding mode controller. To reduce chat-

tering, a saturation function is used with a small linear region (± 0.05) instead of 

a signum function. The η1 and η2 values are set at 0.1 and 0.01 respectively. 

The commanded and actual AOA profiles while using the proposed hybrid 

MFNN-SMC controller are shown in Fig. 5a for cobra manoeuvre. For Herbst ma-

noeuvre, both AOA and bank angles are of importance; hence both profiles are shown 

in Fig. 5b. Fig. 5 reveals that the proposed controller achieves excellent tracking of the 

commanded profiles in both the cases. The three-dimensional trajectories of the air-

craft for the two manoeuvres are shown in Fig. 6.  
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Fig. 3 Cobra manoeuvre response (Nominal SMC – Red solid,  

Exact SMC – Blue dotted and MFNN-SMC Hybrid Controller – Black dashed) 
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Fig. 4 Herbst Manoeuvre response (Nominal SMC – Red solid,  

Exact SMC – Blue dotted and MFNN-SMC Hybrid Controller – Black dashed) 
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                                   (a)                                                                         (b) 

Fig. 5 (a) AOA profile for Cobra Manoeuvre (Commanded – solid, Actual using the 

MFNN-SMC Hybrid Controller – dotted); (b) AOA (in blue) and bank angle (in red) 

profiles for Herbst Manoeuvre (Commanded – solid, Actual using the MFNN-SMC 

Hybrid Controller – dotted) 

 (a)  

 (b) 

Fig. 6 3-D Trajectory (a) Cobra Manoeuvre, (b) Herbst Manoeuvre  

(Nominal SMC – Red and MFNN-SMC Hybrid Controller – Blue) 
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For the cobra manoeuvre case, it is observed that the proposed controller does not 

result in any noticeable lateral deviation of the aircraft (blue plot in Fig. 6a) whereas if 

the Nominal SMC were used, the aircraft would have undergone significant lateral 

deviation (red plot in Fig. 6a). For Herbst manoeuvre, the proposed MFNN-SMC con-

troller reverses the flight direction by 180° as the aircraft flies along the negative 

x-direction after the manoeuvre is executed (blue plot in Fig. 6b). However, if the 

Nominal SMC were retained, the aircraft would fly along the negative y-direction 

instead of the desired negative x-direction after the manoeuvre is completed (red plot 

in Fig. 6b). In Fig. 6, positive x-direction represents the forward direction of flight.  

4. Conclusion 

The paper presented a novel hybrid control architecture combining feedforward neural 

network and sliding mode techniques for performing supermanoeuvres with an aircraft 

under significant lateral mass asymmetry assuming no estimation of the asymmetry on 

board. Results showed that performance of the proposed scheme provided significantly 

improved results in comparison with a standard sliding control formulation which 

ignores the changes in aircraft dynamics arising from the mass asymmetry. It was also 

observed that if the sliding controller was designed considering the asymmetric dy-

namics explicitly, then manoeuvre performance of the same level as that of the 

proposed control scheme would be achieved but that would require online c.g. infor-

mation along with significantly more complexity in control computations. Future work 

in this direction may entail inclusion of asymmetry due to partial structural damage in 

the wing along with the asymmetry in the lateral mass distribution. 

 

APPENDIX 

Notations and Abbreviations 

 

V, h   Velocity, altitude 

α, β   angle-of-attack (AOA) and sideslip angle 

φ, θ, ψ    roll, pitch and yaw Euler angles 

µ, γ,     bank, flight path and heading angles 

p, q, r   body-axis roll, pitch and yaw rates 

u, v, w   velocity components along body x-y-z axes 

Fx, Fy, Fz   external forces along the three body axes 

Mx, My, Mz   external moments along the three body axes 

m, m'   mass of the aircraft pre and post ejection of the store 

Ixx, Iyy, Izz, Ixz   moments and product of inertia before ejection of the store 

I'xx, I'yy, I'zz, I'xy, I'yz, I'xz moments and products of inertia after ejection of the store 

g   acceleration due to gravity 

xcm , ycm , zcm   c.g. location from the origin of the body frame  

δe, δa, δr     stabilator, aileron and rudder deflections 

δT, δp, δy   throttle, pitch and yaw nozzle deflections 

x1   [p  q  r]T 

x1d   desired value of x1 

e   tracking error in x1 i.e. x1d – x1 
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s   sliding surface 

SMC   Sliding Mode Control 

MFNN   Multilayer Feedforward Neural Network 

W, V   weight matrices of output and hidden layers  

6-DOF   six degrees-of-freedom 

sgn (x)   signum function 

sat (x)    saturation function 

 

Actuator position and rate saturation limits 

δe  ±25°; ±60 °/s 

δa, δr  ±25°; ±90 °/s 

δp, δy  ±25°; ±80 °/s 

 

Geometric and mass properties of the aircraft [7, 8]  

Mass    24 000 kg 

Length    17.20 m 

Wingspan   11.80 m 

Wing surface area  39.90 m2 

Mean chord   4.4 m 

Roll-axis moment of inertia 3.512 × 104 kg m2 

Pitch-axis moment of inertia 2.643 × 105 kg m2 

Yaw-axis moment of inertia  2.911 × 105 kg m2 

 

 

Symmetric 6-DOF Dynamics in Body Axes [20] 

 

The force and moment balance equations for a standard symmetric aircraft are given by 
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Asymmetric 6-DOF Dynamics in Body Axes [1, 2, 6-8] 

The force and moment balance equations for an asymmetric aircraft are given by  
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