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Abstract: 

The main aim of the paper is to present an elegant procedure for introducing heterogeneity 

to simplified computational models. A computational model is considered here to be the-

oretically any numerical model that includes material with structural strength. 

Heterogeneity then means the randomness in material parameters, which allows a simpli-

fied model to behave like the comprehensively described structure of a material. The whole 

procedure is explained using the example of a material model of concrete in the form of 

a concrete block (target) which is exposed to high-speed impact loading. Even though the 

described procedure for the introduction of heterogeneity to computational models can be 

applied during the use of practically all numerical methods, the Smoothed Particle Hy-

drodynamics (SPH) method will be used due to the type of loading involved. The creation 

of the presented procedure was prompted by the constantly increasing number of input 

parameters used with material models. Elementary material models with a minimum of 

inputs can be used when applying the procedure. The end of the paper deals with the 

improvement in use that enables heterogeneity (i.e. randomness of material structure) to 

be created in such a way that a simplified model reflects as much as possible the real 

material structure, not only the variations of mathematical functions. 
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1. Introduction 

The original idea in the very foundations of structure designing and related domains 
consisted in creating a simple and robust concept. With the progress of time, simple 
outlines gradually became more complicated, eventually reaching a stage where a mere 
pencil with a sheet of paper had ceased to suffice. Interestingly, at present we are often 
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faced with efforts to design structures as simple as reasonably possible; after being com-
pleted, however, such structures may not necessarily be the simplest ones in terms of 
their behaviour and the presumptions of structural mechanics [1-3]. 

In concrete structures, the material heterogeneity offers a new dimension of com-
plexity. Concrete, as the mixture of a concrete additive (or aggregate for short), a cement 
binder, and water, does not constitute a regular structure from any perspective or at any 
scale; with respect to this fact, not even the behaviour of the given structures can be 
assumed to remain identical in all cases. The introduced randomness is further multi-
plied by the type of load, which is invariably comprised in structural mechanics 
analyses [4-6]. 

In real-world conditions, countless loading tests can be carried out, and the rates 
of occurrence of an effect enable us to presume the most probable result of the series of 
tests to follow. However, numerical analyses and simulations, using common computa-
tional techniques such as the Finite Element Method (FEM), Finite Difference Method 
(FDM), or Smoothed Particle Hydrodynamics method (SPH), will not provide divergent 
results even with an infinite number of computations unless special add-ons are applied 
or changes in input parameters are made. 

In simulations where concrete-based materials are involved, it is always a problem 
related to what material model should be used [7, 8]. The results obtained from varied 
models and their modified versions can differ fundamentally. It is not advisable to in-
troduce the heterogeneity directly into the description of the material model either, 
mainly due to the increasing complexity of the operations and the lack of knowledge 
concerning the sensitivities of the model’s individual parameters before running the ac-
tual computation [9, 10]. For example, in the case of the FEM, a material model would 
have to be generated for each finite element to ensure that the material heterogeneity is 
contained in the numerical model. 

A very scarcely employed option consists in introducing the heterogeneity directly 
into the source code of the numerical method; however, there still remain the questions 
of whether this approach can be used to define the random behaviour of the monitored 
area, or the heterogeneity, and whether such numerical treatment can be further inter-
connected and explained using a real concrete structure. Numerical attenuation is 
utilized in fracture mechanics simulations, where the FEM often finds effective appli-
cation. As the material model is the same in the entire monitored area, the finite element 
geometry can be modified in such a way that any failure is immediately localizable at 
a pre-selected point (for example, via notching on a concrete beam). In high-speed load-
ing, however, the FEM does not offer a suitable solution [11, 12]. 

Conversely, the attractiveness of the SPH approach intensifies with the increasing 
loading speed; yet it also needs to be noted that, in the case of the SPH, there is no 
physical mesh to interconnect the individual particles, and a mere change in the config-
uration of the particles may not provide the desired results (in fact, this type of action 
may even cause adverse effects, including the formation of numerical cracks) [13, 14]. 

The paper is divided into a total of three parts in such a manner that they are linked 
to one another as logical units. The first part describes the procedure, which can gener-
ally be used to introduce heterogeneities (i.e. oscillations of material parameters) into 
the source code of the SPH method. The second part shows a practical application of 
this procedure in which a concrete block (target) incorporating the mentioned heteroge-
neities (material oscillations) is exposed to impact loading. The third part explains how 
the application of heterogeneities can be exploited further to enable a simplified model 
to reproduce the real structure of a modelled material as much as possible. 
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2. The SPH Method 

The formulation of the SPH method is often divided into two key steps. The first step is 
the integral representation of field functions, and the second is particle approximation. 
The concept of the integral representation of a function f (x) used in the SPH method 
starts from the following identity 

 ( ) ( ) ( )df f
Ω

′ ′ ′= −∫ δx x x x x , (1) 

where f is a function of the three-dimensional position vector x, and δ (x – x′) is the 
Dirac delta function given by 

 ( )
0

δ
′+∞ =′− =  ′≠

   x x
x x

   x x
 (2) 

In Eq. (1), Ω is the integration region of the integral that contains x. Eq. (1) implies 
that a function can be represented in an integral form. Since the Dirac delta function is 
used, the integral representation in Eq. (1) is exact or rigorous as long as f (x) is defined 
and continuous in Ω [13]. If the Delta function δ (x – x′) is replaced by a smoothing 
function W (x – x′, h), the integral representation of f (x) is given by 

 ( ) ( ) ( ), df f W h
Ω

′ ′ ′≈ −∫x x x x x , (3) 

where W is the so-called smoothing function and h is the smoothing length defining the 
influence area of the smoothing function W. Note that as long as W is not the Dirac delta 
function, the integral representation in Eq. (3) can only be an approximation [13]. The 
continuous integral representations concerning the SPH integral approximation in Eq. 
(3) can be converted into discretized forms of summation over all the particles in the 
support domain shown in Fig. 1. The corresponding discretized process of summation 
over the particles is commonly known as particle approximation. 

If the infinitesimal volume dx′ in Eq. (3) at the location of particle j is replaced by 
the finite volume of the particle ∆Vj that is related to the mass of the particles mj by 

 j j jm V ρ= ∆ , (4) 

where ρj is the density of particle j (= 1, 2,…, N) in which N is the number of particles 
within the support domain of particle j, then the continuous SPH integral representation 
for f (x) can be written in the following form of discretized particle approximation [13] 
as 
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Eq. (6) states that the value of a function at particle i is approximated using the 
average of those values of the function at all the particles in the support domain of par-
ticle i weighted by the smoothing function shown in Fig. 1. 

Fig. 1 Particle approximation using particles within the support domain of the 

smoothing function W for particle i 

2.1. Size of the Support Domain 

The extent of the support domain is defined according to Fig. 1 as the size of the gener-
ally variable parameter h, which is called the smoothing length. Parameter h can also be 
multiplied by constant κ. Particles which are inside the support domain attributable to 
particle i are called neighbouring particles. If the resultant value of the product κh in 
each time step of the numerical simulation is the same, there can be the decrease in the 
number of neighbouring particles and thus also the decrease in the accuracy of the solu-
tion due the effect of excessive deformations (i.e. during the mutual divergence of the 
SPH particles). It is advisable to change the size of the support domain during the cal-
culation in such a way that the number of neighbouring particles is constant.  

There are many ways to dynamically develop h so that the number of neighbouring 
particles remains relatively constant. In 1989, Benz [14] suggested a method of devel-
oping the smoothing length. This method uses the time derivative of the smoothing 
function in terms of the continuity equation 

 
d 1 d 1

d d

h h
h

t d t d

ρ
ρ

= − = ∇⋅v , (7) 

where d is the number of dimensions and ∇⋅v  is the divergence of the flow. This means 
that the smoothing length increases when particles separate from each other and reduces 
when the concentration of particles is significant. It varies in order to keep the same 
number of particles in the neighbourhood. Eq. (7) can be discretized using SPH approx-
imations and calculated with other differential equations in parallel [13]. 
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2.2. Eulerian and Lagrangian Kernels 

The approach in Eq. (7) is applicable when the integral representation of field functions 
is formulated in spatial coordinates (Eulerian kernel). With an Eulerian kernel, the 
smoothing length of a particle changes through the calculation. As a consequence, the 
neighbourhood of each particle needs to be updated at each time step [15]. However, 
nothing exists to prevent the number of neighbouring particles changing. Despite the 
implementation of Eq. (7), the particles can enter and leave the support domain and thus 
tensile instability can occur. In other words, this means that the possibility of simulating 
ductile failure during the excessive divergence of particles from one another disappears. 
The behaviour of an Eulerian kernel during a calculation can be seen in Fig. 2.  

Fig. 2 Eulerian kernel – the amount of particles within the support domain might  

not be constant 

However, when the integral representation of field functions is formulated in the 
material coordinates (Lagrangian kernel), the neighbours’ list of each SPH particle is 
defined in the initial configuration and remains constant throughout the whole calcula-
tion. It means that the support domain of a particle follows material deformation in order 
to always keep the same neighbours. It provides a way of solving tensile instabilities 
[13]. The behaviour of a Lagrangian kernel during a calculation can be seen in Fig. 3.  

Fig. 3 Lagrangian kernel – the amount of particles within the support  

domain is constant 
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To eliminate the tensile instabilities in the simulations the Lagrangian kernel was 
selected. The value of parameter κ = 1.2 was used. In other words, the extent of the 
support domain was 20 % bigger than using Eq. (7). 

3. Numerical Heterogeneity 

Each SPH particle can be considered a Lagrange element with regard to the fact that the 
mass mj allocated to a particle moves together with the particle during the simulation. 
Also, it can be stated that mass mj acts in Eq. (6) as a weight coefficient. The higher the 
mj value, the more particle j is going to influence its surroundings. This information can 
be utilized very simply to create numerical heterogeneity [16]. 

Numerical heterogeneity can be considered to be an adaptation of the computa-
tional model in the sense of the modification of its numerical code or of the numerical 
method with which the simulation is calculated. Combination is also possible. The fol-
lowing approach can be considered a combination of both methods. It modifies the 
computational model as well as the numerical method. The modification consists in the 
introduction of the oscillation of the masses of SPH particles. However, this oscillation 
will directly precede the compilation of Eq. (6) for each i particle. In other words, the 
oscillation of the weight coefficients occurs directly. Other impacts may include the 
creation of virtual geometry in the background of the calculation; more information can 
be found in [16]; also see Fig. 4. 

With regard to that, it can be stated that the introduction of the material heteroge-
neity into the tested models was performed via modifying the weight coefficient value 
of the individual SPH particles; in other words, the particle mass mj included in Eq. (6) 
was modified. Further, the same density value was preserved in all the particles, mean-
ing that – with respect to the validity of Eq. (4) – the volume assigned to the individual 
particles was virtually modified (enlarged / reduced). 

However, due to the necessity to maintain the best possible particle distribution 
regularity in the tested models (an identical smoothing length for all the particles), the 
initial particle distributions were generated for the state where all the particles are as-
signed the same volume ∆Vj. This operation is graphically represented in Fig. 4. 

Fig. 4 Inclusion of numerical heterogeneity in the SPH model 

4. Mass Distribution and Experiment Set Up 

As the individual SPH particles had to be assigned various masses or weight coeffi-
cients, it was necessary to build the entire distribution procedure upon the precondition 
of a constant weight of the resulting body – concrete block (target) in the tested scenario. 
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The procedure can nevertheless satisfy the conditions of any distribution function (in-
cluding, for example, the normal, uniform, or Poisson distribution variants). For the 
actual testing, the uniform distribution of the occurrence of masses was selected. The 
reason for choosing uniform distribution consisted in testing the computational stability. 
The properties of the smoothing function enable the SPH method to suppress or high-
light the heterogeneities contained in a computational procedure [13]. By another 
definition, the sensitivity of the computational stability in the presence of particles with 
almost zero mass (such as air pores in concrete) was tested. 

Fig. 5 Diagram of the numerical experiment 

A brief description of the simulated experiment is presented in Fig. 5. The scheme 
shows a rigid projectile striking a concrete block at the speed of 500 ms-1. Rigid projec-
tile was simulated with the Finite Element Method (FEM) and the concrete block with 
the SPH method. The concrete block was fixed on the edges. A penalty based contact 
algorithm was used for the interaction between FEM and SPH. As one of the precondi-
tions for the functionality of the introduced procedure consists in regular initial particle 
distribution, the block was discretized with 10 particles in the depth and 90 particles in 
the height and width. The particles were arranged to form a regular, grid-based field, as 
it is also indicated in Fig. 6. The simulations involved 81 000 SPH particles in total and 
were performed via the LS-DYNA program [17]. The Continuous Surface Cap Model 
(CSCM) was chosen as the material model of concrete to be used [18, 19]. Tab. 1 shows 
the parameters employed in the simulations. 

Fig. 6 demonstrates tested models with the representation of the masses. Before 
running a computation, different fields within the concrete block were selected where 
randomness consisting in uniform distribution of masses was taken into account. 

Based on the type of field (size, shape, volume or algorithm) and a distribution 
function, the random masses are generated to create modified models according to the 
procedure in Fig. 4. More about the topic can be found in [20, 21]. 
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Fig. 6 The mass distribution of tested models (units in kg). Type of field:  

a) completely random; b) random depth projection; c) random laminating projection 

Tab. 1 Material Parameters for the CSCM Model   

Mass density, ρc [kgm-3] 2207   
Compressive strength, fc [MPa] 43.10 
Initial shear modulus, G [GPa] 12.92 
Initial bulk modulus, K [GPa] 14.15 

Poisson’s ratio, vc 0.18 
Fracture energy, GF [Jm-2] 83.25 

5. Numerical Simulations Results 

The light-grey portions of the images invariably represent a crackless material, whereas 
the dark-red sectors stand for complete failures (main cracks mostly). All the results 
were captured at the same moment. 

Fig. 7 shows deformed models into which material heterogeneity (i.e. oscillation 
of material parameters) has been introduced. It is clear from Fig. 7 that when heteroge-
neity is introduced into models, they become prone to random failures. This 
demonstrates (inter alia) the functionality of the introduced procedure. If the loaded 
targets are examined in a greater detail, several conclusions can be drawn.  

Fig. 7 Deformation of the heterogeneous models after direct impact  

of the rigid projectile 

Even though the variant target a) was created with the idea of incorporating the 
oscillation of the masses of all SPH particles (hence the name completely random), sym-
metricity of failure can be observed in Fig. 7. This phenomenon occurs most frequently 
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in homogeneous models – i.e. in models with no introduced heterogeneity. One expla-
nation is that it was caused by the use of a uniform distribution of masses. As far as the 
functional aspect is concerned, once again a regular structure was actually created – 
heterogeneous when viewed from close up but homogeneous as a whole.  

The variant targets b) and c) do not show any signs of symmetricity. This is mainly 
due to the fact that the oscillation of masses itself was only performed at several posi-
tions on the model (target) which were also random – generated with noise functions, 
see also [20, 21]. Again, distinctions can be made between the individual types of fail-
ure. The random fields of generated variant b) were created in regions extending 
depthwise through the target. On the other hand, the random fields of generated variant 
c) were created in regions extending laminarly along the surface of the target. As a re-
sult, target b) has a tendency to split, with the formation of many major cracks, while in 
contrast, target c) tends to break at the interface of the transition of the laminar field of 
heterogeneities – in the same manner as lithospheric plates.  

Even though the graphs of the speed of a rigid projectile in Fig. 8 are almost iden-
tical, which is mainly due to the use of small oscillation of masses, a large support 
domain size and the selected smoothing function, it can be concluded that certain pro-
cedures are not suitable. Using the procedure for the creation of target a), a random 
failure can be obtained which is symmetrical and nearly corresponds to the model with-
out any introduced oscillation of masses – generally, it is not suitable. Using the 
procedure for the creation of target c), a random failure can be obtained, but unfortu-
nately, laminar fields of heterogeneity only appear in large structures where they are 
created via a poorly executed compaction process – they are not suitable for small struc-
tures or models.  Using the procedure for the creation of target b), a random failure can 
be obtained and simultaneously the shape of the heterogeneity fields can be justified as 
being the result of prefabricated production processes – it can generally be considered 
suitable. 

From the practical point of view, the presented procedure is numerically stable, 
mathematically transparent and is able to simply produce various results. More about 
the topic can be found in [16, 20]. 

Fig. 8 Rigid projectile velocity comparison 
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6. Transition Layer 

The presented procedure for the introduction of heterogeneity was based on the idea of 
the oscillation of masses or weight coefficients, which were applied to the whole model, 
or only in certain fields of the model. However, these fields were selected on the basis 
of mathematical functions, and not with regard to the structure of the material. 

The whole procedure can only be improved by the application of the oscillation of 
masses at the interface between aggregate and cement binder – the transition layer, in 
the case of concrete. In other words, the process of the uneven solidification and hard-
ening of cement binder on grains of aggregate can be simulated. The creation of the 
transition layer is very simple; a thorough description of this algorithm can be found in 
[20, 21]. By way of illustration, Fig. 9 shows several examples of the structures of the 
transition layer of concrete material for various aggregate grains.  

Fig. 9 Examples of the transition layer. Aggregate grain shape:  

a) fine sharp; b) coarse sharp; c) fine rounded; d) coarse rounded 

7. Conclusions 

The paper discusses a simple procedure for introducing numerical heterogeneity into 
SPH-based models. Interestingly, such numerical heterogeneity originates in a real 
property of concrete-based materials. The principles of the relevant procedure and the 
conditions that, if satisfied, enable to avoid numerical cracks, which are unrelated to the 
numerical heterogeneity are also characterized. The whole procedure for the heteroge-
neity introduction of a material is based on the modification of the weight coefficient of 
individual SPH particles. In other words, it is not necessary to generate a great number 
of material models as is often the case with other methods – on the contrary, only one is 
sufficient. This greatly decreases the requirements for the initial stages of the calcula-
tion. Moreover, it is very easy to introduce various heterogeneity fields, which are 
related to any distribution function via the direct modification of the SPH source code. 
It can be said that another advantage of the presented method is its simplicity and trans-
parency. 

The entire principle is presented using a simple fracture mechanics test where 
a rigid projectile strikes a concrete block (target); the results clearly point to the func-
tionality of the procedure. In subsequent research, the authors would like to investigate 
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the generation of random fields with predefined distribution functions, which are varia-
ble in time. This would make it possible to consider phenomena related to the ageing of 
materials, potentially even with their cyclic loading. 
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