
AiMT
Advances in Military Technology

Vol. 11, No. 2 (2016), pp. 159-170
ISSN 1802-2308, eISSN 2533-4123

DOI 10.3849/aimt.01105

Language Representations Based on C-BML

and Their Processing

Ľ. Dedera
1*

 and M. Benčík
2

1Department of Informatics, Armed Forces Academy of Gen. M. R. Štefánik,

Liptovský Mikuláš, Slovak Republic
2Department of Communication Information System Services,

Base of Mobile Communications and Information Systems, Ružomberok, Slovak Republic

The manuscript was received on 4 February 2016 and was accepted

after revision for publication on 12 October 2016.

Abstract:

The paper tries to put together one computer languages view on Battle Management

Languages (BMLs) with the current C-BML Phase 1 Standard: We present a case study

on creating language representations by means of formal parsable context-free gram-

mars and corresponding language processors in the area of military C2 systems utilizing

the standardized C-BML data structures. We point out how techniques and tools previ-

ously used in the area of compilers (namely Flex, Bison) are exploitable in the military

domain and thus might be helpful in integration of national command and control

systems and deployment in multinational environment. We start with an introduction to

C-BML principles and data model; next we describe the basis for our (Slovak) language

representation followed by its specification in the form of a parsable context-free gram-

mar; next follows the section devoted to the lexical, syntactic, and semantic processing

of the language representation with the utilisation of Flex and Bison tools.

Keywords:

C-BML, MSDL, Domain-Specific Language, grammar, syntax, semantics, language

processor

1. Introduction

Nowadays computer languages can be met with in various application domains. They

are usually being used as a formalized means for representation of information and

knowledge in all areas where their computer processing is expected. The main differ-

ence between them and natural languages, besides their limited expressive power and

lexical vocabulary concentrated on a particular application domain, is the fact that

* Corresponding author: Department of Informatics, Armed Forces Academy of Gen. M. R.

Štefánik, Demänová 393, 031 06 Liptovský Mikuláš, Slovak Republic. Phone: +421 960

42 30 29, E-mail: Lubomir.Dedera@aos.sk

mailto:Lubomir.Dedera@aos.sk

160 L’. Dedera and M. Benčík

their syntax as well as semantics is based on strict formal rules ensuring unambiguous

meaning or interpretation of constructs created in the language.

Military application domain has much in common with the attitude mentioned be-

fore. For example, long before the foundation of computer science and formal lan-

guages and grammars as their integral part, in armies there existed de facto standard-

standardized and formalized languages for giving orders, commands, and reports.

Besides national levels, this fact has been reflected on the Coalition level [1]. Gradual

deployment of military information systems called out for the need of their integration,

interoperability and mutual exchange of data. The last mentioned problem has been

solved, on the Coalition level, with a broad standard JC3IEDM [2] based on XML

schemas. Further initiative in this field has been a series of projects and activities

around the development of the Coalition Battle Management Language (C-BML) [3-

6], which resulted in establishing the standard [7, 8]. According to this document, C-

BML is defined as a standard language for expressing and exchanging plans, orders,

requests, and reports across C2 systems, live, virtual and constructive modeling and

simulation systems, and robotic systems participating in Coalition operations. Its

Product Development Group has identified three phases of the development of the

standard [7]:

 Phase 1, Data Model: This phase has finished with the standard [7] itself and

provided basic set of terms and concepts (i.e. basic vocabulary in the form of

XML schemas based on JC3IEDM as the starting point) for constructing more

elaborate C-BML expressions. The standard has also established practices for

identifying and describing proposed changes to the JC3IEDM for C-BML ap-

plications.

 Phase 2, Formal Structure (Grammar): This phase should establish a grammar

(syntax, semantics, vocabulary) for more complex concepts and structures such

as plans, orders, request, and reports to express a particular doctrine.

 Phase 3, Formal Semantics (Ontology): This phase should provide formal se-

mantics of concepts from the previous phases to ensure automated processing

of the content of the C-BML expressions and conceptual interoperability across

systems [7, 9].

C-BML is closely related to another computer language within the military do-

main – Military Scenario Definition Language (MSDL); currently the development of

both standards is covered by the common C2SIM Product Development Group [10].

Both C-BML and MSDL have also been studied, e.g. within NATO STO MSG–145 in

order to promote the interoperability between C2 and simulation systems. Both MSDL

and C-BML standards are formatted into XML (Extensible Markup Language) sche-

mas. MSDL specifies force structures, environment, and other information for initial i-

zation of simulation systems; C-BML, on the other hand, can be utilized for describing

the execution of military scenarios. MSDL defines a military scenario as a specific

description of the situation and course of action for each element in the scenario. The

representation of a scenario reflects aspects such as common mission, enemy, terrain,

weather, troops and support available, time available, and civil elements of the mili-

tary situation that have to be taken into consideration [11]. There are several strategies

for MSDL and C-BML cooperation [12]. One of these strategies is based on the

translating MSDL/C-BML elements into the required form. Translating one language

into the required form will also be shown in the next chapters.

From a software engineering point of view, C-BML can be considered as an ex-

ample of a Domain-Specific Language (DSL) designed specifically for the military

Language Representations Based on C-BML and Their Processing 161

domain. In [13], the use of C-BML for communicating with multi-robot systems is

described. In [14], a modeling case study using C-BML for the exchange of orders and

reports related to patrol mission is presented. Papers [15, 16] describe how C-BML

and/or MSDL are used in the Technical Cooperation Panel of the Coalition Attack

Guidance Experiment (CAGE) nations or in the French-German COMELEC army

training initiatives, respectively.

From the development of the C-BML grammar point of view, experiments and

demonstrations with Command and Control Lexical Grammar (C2LG) with a GUI

editor [4, 5] have been performed with the aim to prove that C-BML is a suitable tool

for the exchange of orders and reports between C2 systems and constructive simula-

tors [6]. Paper [17] aims at the way in which to implement lexical functional grammar

based approaches into object-oriented class hierarchies with the conclusion that “Lexi-

cal Functional Grammar approach combined with object-oriented representation is

a good practice in order to represent grammar in BML.”

Computer science and software engineering view on the topic of languages in the

context of the military application domain have been discussed in [18, 19]. In [18],

a category of a Domain-Specific Language [20] that can be utilized as a programming

or specification language in the military application domain (C2) has been introduced,

together with the principles of syntactic as well as semantic processing of the lan-

guage. At the same time, a certain parallel between traditional programming languages

and DSLs in the area of C2 from both processing and utilization point of view, where

the role of a DSL-trained military commander in relation to a DSL can be analogical to

the role of a computer programmer in relation to a programming language. In [19], the

concept of DSL has been extended in the direction of application of techniques of both

abstract and concrete syntax and semantic processing as a means to achieve multilin-

gual support and a certain form of semantic interoperability in the context of C2

systems. This approach enables to study and design families of DSLs with different

concrete syntaxes (each of them tailored for a specific usage, audience, and/or nation),

but with mutually related semantic processing, which should simplify the development

of interoperable systems. The ideas behind abstract syntax and semantic processing are

similar to the ones presented in [8], where the abstraction and association relationships

between classes are used to represent a model of the grammar.

In this paper, we have followed the ideas presented in [18, 19] and tried to join

them with the C-BML standard [7] by introducing an example of a grammar describ-

ing simplified structure of a language for the control of combat operations intended for

Slovak (human) environment (so-called Slovak language representation, SLR), togeth-

er with a language processor transforming sentences in SLR into standardized XML

data structures of C-BML. The idea has been presented for the first time at the confer-

ence [21] and now we bring a more detailed view on its aspects: We start with an

introduction to C-BML principles and data model; next we describe the basis for our

language representation followed by its specification in the form of a parsable context-

free grammar; next follows the section devoted to the lexical, syntactic, and semantic

processing of the SLR with the utilisation of Flex and Bison tools [22, 23].

2. C-BML Principles and Data Model

Basic information components of C-BML can be described by so called “5Ws para-

digm” (Who, What, When, Where, Why). The information obtained from 5Ws is

162 L’. Dedera and M. Benčík

essential for the expression of orders, requests, and reports for any doctrine, unit, as

well as nation [7]. Now let us introduce the 5Ws model description:

1. “Who” is an information component of C-BML designed to identify the object:

 Intended to carry out an activity (TaskeeWho in orders)

 Ordered the execution of tasks (TaskerWho in orders)

 Affected by the task to be performed (AffectedWho in orders)

 Who asked or was asked to perform specific actions (RequesterWho, Request-

edWho specified in requests)

 Which observed or was observed or executed some action (ReporterWho, Re-

portedWho specified in reports)

 To whom a report is addressed (AddresseeWho)

2. “What” is the information component of C-BML describing the action that will be

or was performed (What in orders, ReporterWhat and ObservedWhat in reports).

3. “When” is an information component of C-BML describing the time frame when

the action should be or was executed:

 When the order was issued (OrderIssuedWhen)

 Start/end time of the action (StartWhen, EndWhen in orders)

 Time of the event (When, WhenTime, WhenEvent, WhenDetails in reports)

 Time relative to another when (RelativeWhen in orders and reports)

4. “Where” is an information component of C-BML providing the exact location of the

object on the battlefield, the place where the action is carried out or the place where

a particular action or event occurred:

 Where an action is done (AtWhere)

 A route to be followed in an action (RouteWhere)

 Initial or final position (StartWhere, EndWhere)

 Where defined as a control feature (ControlFeatureWhere)

5. “Why” is an information component of C-BML describing the reason or the purpose

of the actions, or desired end state of the action:

 Reason for executing an order (Why in orders)

 Perceived or observed reason (ReporterWhy, ObservedWhy in reports)

The 5Ws model concerns doctrinal perspective of C-BML. The basic elements of

abstraction in the doctrinal content greatly facilitate the description of orders, requests,

and reporting for all organizations and national forces, which will use the C-BML.

These basic components of the language are used to construct C-BML terms (orders,

requests, and reports) which are designed in accordance with the content of infor-

mation exchange and structure specification [7]. Thus, each "W" of the 5Ws model is

used in expressing orders, requests, and reports. For example, "Who" in an order can

be the unit who gave the order, whilst the other "Who" would represent the unit that

will carry out the order.

As a central reference model for C-BML data model, JC3IEDM [2] has been cho-

sen. It is sufficiently robust to cope with the amount of data that should be inter-

changed among systems for which C-BML is proposed (C2, robotic, M&S). The

model is based on a set of concepts, their attributes, relations and business rules to

check data consistency and is described using XML schemas. Fig. 1 illustrates the

component “Where” describing a route to be followed in an action (RouteWhere). The

route can be specified by its starting location (StartWhere), ending location (End-

Where) and a list of passing-through locations (Via). To express a location, the princi-

ple of generalization known e.g. from object-oriented methods has been utilized.

Language Representations Based on C-BML and Their Processing 163

Fig. 1 C-BML data structures

3. Grammar for Slovak Language Representation

Since battle management languages are still computer languages, their syntax can be

described by context-free grammars (CFGs) [20, 24]. From a theoretical computer

science of view, a context-free grammar is a 4-tuple G = (N, T, P, S), where

 N is a finite set of nonterminals (or variables depicted using <…>),

 T is a finite set of terminals (lexical elements, depicted in bold),

 nonterminal S plays the role of the starting symbol of the grammar from which

each derivation starts, and

 P is a finite set of productions (or rewriting rules) of the form B → α, where

nonterminal B is the left-hand side and string (or sequence) α consisting in gen-

eral of both terminals and/or nonterminals is the right-hand side of the produc-

tion. The right-hand side of a production might also be the empty string,

denoted further by Ɛ.

For our experimental grammar, we have selected four basic commands (Attack,

March, Occupy, DelayEnemy). It is now necessary to construct a formal context-free

grammar describing the syntax. From the selected basic commands, we can see what

we need to describe by our grammar [8]:

 Task (Attack, March, Occupy, DelayEnemy)

 Tasker (Unit who ordered the execution of task)

 Taskee (Unit who perform the task)

 Where (Place where the task will be performed)

 Route (Route where the unit will be moving)

 Start (Start time of the task)

 End (End time of the task)

 Why (Reason of the task)

164 L’. Dedera and M. Benčík

When creating the grammar, we have to take into consideration linguistic aspects

of the Slovak language (punctuation, word order in phrases, addition of some key-

words, data formats, etc.) in order to ensure better understanding of the language

phrases for Slovak-speaking users and mainly (since our grammar is experimental) to

show how these aspects can be reflected in a concrete formal context-free grammar.

Our experimental grammar for SLR consists of 37 rewriting rules. The names of

relevant nonterminals reflect the 5Ws principle. Rules 1-2 describe the sequence of

commands. Rule 3 describes a structure of a single command (prikazuje). Rules 4-7

describe four particular tasks – Attack (útoč), March (pochoduj), Occupy (obsaď) and

DelayEnemy (zdrž nepriateľa). Rules 8-13 describe a formation (sila) of the enemy

unit from squad (družstvo) through platoon (čata), company (rota), battalion (prápor)

to brigade (brigáda). Rules 14-16 describe Taskers and Taskees; rules 17-27 time

phrases, particularly at (o), not later than (najneskôr o), immediately, not later than

(ihneď, nie neskôr ako), after (po), immediately after (ihneď po), before (pred), not

before (nie pred); rules 28-29 not compulsory Why data and rules 33-37 Where data

using phrases from (z), to (do), and via (cez). The starting symbol is <commands>.

1. <commands> → <command> <commands>

2. <commands> → Ɛ

3. <command> → <TaskerWho> prikazuje <TaskeeWho> <TaskWhat>

<StartWhen> <EndWhen> <Why>;

4. <TaskWhat > → útoč <AtWhere> <Strength>

5. <TaskWhat> → pochoduj <RouteWhere>

6. <TaskWhat> → obsaď <AtWhere>

7. <TaskWhat> → zdrž nepriateľa <Strenght> <AtWhere>

8. <Strength> → sila <formation>

9. <formation> → družstvo

10. <formation> → čata

11. <formation> → rota

12. <formation> → prápor

13. <formation> → brigáda

14. <TaskerWho> → <unit>

15. <TaskeeWho> → <unit>

16. <unit> → string

17. <StartWhen> → <time data>

18. <time data> → o <time>

19. <time data> → najneskôr o <time>

20. <time data> → ihneď, nie neskôr ako <time>

21. <time data> → po <time>

22. <time data> → ihneď po <time>

23. <time data> → pred <time>

24. <time data> → nie pred <time>

25. <time> → time <timezone>

26. <timezone> → timezone

27. < EndWhen > → <time data>

28. <Why> → string

29. <Why> → Ɛ

30. <AtWhere> → coordinates <Precision> <WhereCategory>

31. <Precision> → precision

32. <Precision> → Ɛ

Language Representations Based on C-BML and Their Processing 165

33. <WhereCategory> → category

34. <WhereCategory> → Ɛ

35. <RouteWhere> → z <AtWhere> do <AtWhere> <via>

36. <via> → cez <AtWhere> <via>

37. <via> → Ɛ

Regarding lexical elements, some of them represent a unique sequence of charac-

ters (útoč, ihneď, o, z, cez, družstvo etc.); others (namely string, time, timezone,

coordinates, precision, category) cover sets of data of a particular format.

4. Processing of the Language Representation

Development of the language processor consists of two parts, namely the creation of

the lexical analyzer and the parser, along with semantic routines. For both there are

specialized software tools which allow the developer to concentrate on substantial,

creative activities (description of lexical elements in the former case and description of

a grammar accompanied with semantic routines in the latter case). In our case, for the

creation of the lexical analyzer the Flex tool has been used and the Bison tool has been

used for the creation of the parser. The process is depicted in Fig. 2. Both tools were

originally developed to support compiler construction and run under the Unix operat-

ing system; in the case of Microsoft Windows we can use the Cygwin environment

that provides functionality similar to the Linux operating system.

Flex [22] is a tool for generating lexical analyzers or, more generally, text pro-

cessors based on regular expressions. Flex processes an input file (with the suffix .l or

.lex) and generate a lexical analyzer in the form of source code in the C programming

language (file lex.yy.c), which is accessible via the function yylex(). The descrip-

tion of the lexical elements is created in the form of pairs consisting of regular expres-

sions and related codes in the C language. Regular expressions describe individual

lexical elements and after recognizing a particular one of them, the corresponding

program code executes. For example, the lexical element time can be described by

a regular expression

(([0-1][0-9] | [2][0-3])[:][0-5][0-9]) return(TIME);

where TIME is a symbolic constant returned in this case by the function yylex().

Fig .2 Creation of language processor

166 L’. Dedera and M. Benčík

Bison [23] is a LALR(1) parser generator of language processors. Bison reads the

specification of the language in the form of a context-free grammar combined with

semantic actions expressed as blocks of the C programming code (input file with the

suffix .y) and generates a parser (again in the form of the C programming language

code) that is able to read a sequence of tokens (lexical elements recognized by the

lexical analyzer) and decide whether a sequence (sentence) corresponds to the syntax

specified by the grammar. If a particular sequence of symbols (usually right-hand side

of a particular rule) is recognized, then the corresponding semantic action (program-

ming code) is executed. The tool itself offers support for the information exchange

among semantic routines by means of semantic records and a semantic stack. For

example, let us consider rule 35 describing the structure of a route from a starting

point (Z) to an ending point (DO) via an optional sequence of passing-through points.

Its syntax as well as semantic processing can be described in the following way:

RouteWhere:

 Z AtWhere DO AtWhere Via

 {

 $$=(struct Route *)malloc(sizeof(struct Route));

 $$->from = $2->AtWhere;

 $$->to = $4->AtWhere;

 $$->via = $5->Via;

 }

 ;

When the parser recognises the right-hand side of this production, the corre-

sponding semantic routine creates a new semantic record (of the type struct

Route) representing the whole route and associates it with the left-hand side of the

production (RouteWhere, $$). The starting point of the route is collected from the

semantic record associated with the first nonterminal AtWhere (accessible as $2),

ending point from the semantic record associated with the second nonterminal At-

Where ($4) and the list of passing-through points from the semantic record associated

with the nonterminal Via ($5).

As we could see, the main role of semantic routines was to collect information

from lexical elements and/or nested structures and output this information in the form

of XML data structures as it is shown in the next example. The generated parser runs

only relevant semantic actions and ensures communication between them using

a semantic stack. The Bison tool is compatible with the Flex tool and they are often

used together for the development of language processors.

In the next step a language processor for the grammar for SLR has been devel-

oped. Its role is to transform syntactically valid expressions in SLR into standardized

C-BML data structures. For example, the command

"2.Division" prikazuje "1.Platoon" zdrž nepriateľa sila družstvo 13.548789 22.632541

10MTR TARGET najneskôr o 11.04.2016 08:15:00 CET nie pred 11.04.2014 10:30:00

CET;

is transformed by the language processor into:

Language Representations Based on C-BML and Their Processing 167

 <?xml version="1.0" encoding="UTF-8"?>

 <CBML xmlns:xsi="http://www.w3.org/2001/XMLSchema-instance"

xmlns="http://www.sisostds.org/schemas/c-bml/1.0"

xsi:schemaLocation="http://www.sisostds.org/schemas/c-bml/1.0 ../../example-

expressions-schema/example-cbml-expressions.xsd">

 <Task>

 <What>

 <ActionTask xsi:type="OtherActionTask">

 <ActivityCode>DELAY ENEMY</ActivityCode>

 </ActionTask>

 </What>

 <FormationLevel>SQUAD</FormationLevel>

 <TaskerWho>

 <OrganisationRef xsi:type="UnitRef">

 <OID> "2.Division"</OID>

 </OrganisationRef>

</TaskerWho>

<TaskeeWho>

 <OrganisationRef xsi:type="UnitRef">

 <OID> "1.Platoon"</OID>

 </OrganisationRef>

</TaskeeWho>

<AtWhere>

 <SpecificLocation>

 <Location xsi:type="GeographicPoint">

 <LatitudeCoordinate>13.548789</LatitudeCoordinate>

 <LongtitudeCoordinate>22.632541 </LongtitudeCoordinate>

 <PrecisionCode>10MTR</PrecisionCode>

 <WhereCategory>TARGET</WhereCategory>

 </Location>

 </SpecificLocation>

</AtWhere>

<When>

 <StartWhen>

 <AbsoluteTime>

 <SpecifiedTime>

 <Datetime>20160411081500</Datetime>

 <StartQualifierCode>NLT</StartQualifierCode>

 <Timezone>CET</Timezone>

 </SpecifiedTime>

 </AbsoluteTime>

 </StartWhen>

168 L’. Dedera and M. Benčík

 <EndWhen>

 <AbsoluteTime>

 <SpecifiedTime>

 <Datetime>20160411103000</Datetime>

 <EndQualifierCode>NOB</EndQualifierCode>

 <Timezone>CET</Timezone>

 </SpecifiedTime>

 </AbsoluteTime>

 </EndWhen>

</When>

</Task>

5. Conclusion

In this paper, we have tried to extend our computer languages view on Battle Man-

agement Languages and combine it with the current C-BML standard. We have intro-

duced an example of a formal context-free grammar describing simplified structure of

a language for the control of combat operations intended for Slovak (human) environ-

ment, together with a description of the language processor transforming sentences in

SLR into standardized XML data structures of C-BML that has been developed using

the Flex/Bison tools. The grammar described in the paper has been designed for

research and demonstration purposes only: The aim of the paper was to point out at

a certain approach to the topic, not to find a detailed complex solution which the

authors did not have enough resources for. When creating a more complex grammar, it

would be necessary to pay attention to its parsability by one of the known parsing

techniques (e.g. LL(1), LR(1), LALR(1)), but this is, in the case of artificial computer

languages, a solvable problem.

The specific of our approach to Battle Management Languages is the fact that our

primary starting concept is the formal language as one of the key concepts in computer

science. We consider this approach to be more general, and together with respecting

principles of language engineering and separation of abstract and concrete syntax and

semantics [19, 20, 24] more adaptable to various conditions, as the approaches where

the language is considered just as a means to solve a particular problem.

By this example we also wanted to point out how it is possible to construct con-

crete language representations tailored for particular environments. Different environ-

ments can represent either different nations and/or the fact that the language should be

used primarily for communication with humans (either in graphical or in textual form)

or machines. For this reason, we find it interesting to study and design languages with

different concrete syntaxes, but with mutually related semantic processing. The princi-

ples of language design and processing presented in the paper could lead to the design

of the whole family of “BMLs”, each tailored for particular audience or purpose,

together with their language processors. Considering the principles on which C-BML

has been designed, it seems to be possible. This goal can be accomplished by utilizing

an abstract syntax of the language and defining the great majority of semantic pro-

cessing on it [21].

In our work we have also come to two main conclusions [21]:

Language Representations Based on C-BML and Their Processing 169

 We have shown that computer languages and techniques of their processing can

be utilized in the area of semantic interoperability (e.g., data and command

conversions) among different military systems.

 We have shown that the Flex and Bison tools that have been originally devel-

oped for the support of compiler construction can also be utilized in a com-

pletely different application domain.

Acknowledgement

This work has been supported by the Ministry of Defence of the Slovak Republic

(research project VV1-2015 “Cyber Threats and Defence of Military Information

Systems”).

References

[1] NATO STANAG 2014, Formats for orders and designation of timings, locations

and boundaries. North Atlantic Treaty Organisation, 2000.

[2] NATO STANAG 5525, Joint C3 information exchange data model – JC3IEDM.

North Atlantic Treaty Organisation, 2007.

[3] BLAIS, C., HIEB, M. R. and GALVIN, K. Coalition Battle Management Lan-

guage (C-BML) [Study Group Report]. In Proceedings of the Fall Simulation In-

teroperability Workshop. Orlando: SISO, 2005. 13 p.

[4] SCHADE, U. and HIEB, M. R. Formalizing Battle Management Language:

A Grammar for Specifying Orders. In Proceedings of the Spring Simulation In-

teroperability Workshop. Huntsville: SISO, 2006. 13 p.

[5] REIN, K., SCHADE, U. and HIEB, M. R. Battle Management Language (BML)

as an Enabler. In Proceedings of the 2009 IEEE International Conference on

Communications ICC 2009. Dresden: IEEE, 2009. 5 p.

[6] HEFFNER, K., BROOK, A., REUS, N., KHIMECHE, L., MEVASSVIK, M. O.,

PULLEN, M., SCHADE, U., SIMONSEN, J. and GOMEZ-VEIGA, R. NATO

MSG-048 C-BML Final Report Summary. In Proceedings of the 2010 Fall Simu-

lation Interoperability Workshop. Orlando: SISO, 2010. 11 p.

[7] SISO-STD-011-2014, Standard for Coalition Battle Management Language (C-

BML) Phase 1. Simulation Interoperability Standards Organization, 2014.

[8] SISO-GUIDE-00X-201X, Guide for Coalition Battle Management Language (C-

BML) Phase 1 Version 1.0. Simulation Interoperability Standards Organization,

2014.

[9] GALINEC, D., STEINGARTNER, W. and MACANGA, D. Command and

Control Information Systems Semantic Interoperability using a Canonical Mes-

saging Approach. Central European Journal of Computer Science, 2012, vol. 2,

no. 3, p. 316-330.

[10] SISO [on line]. C2SIM PDG/PSG - Command and Control Systems - Simulation

Systems Interoperation. [cited 2016-06-16]. Available from:

<https://www.sisostds.org/StandardsActivities/DevelopmentGroups/C2SIMPDG

PSG-CommandandControlSystems.aspx>

170 L’. Dedera and M. Benčík

[11] BLAIS, C. Strategies for Application of the Coalition Battle Management Lan-

guage (C-BML) with the Military Scenario Definition Language (MSDL). Monte-

rey: Calhoun, the Naval Postgraduate School Institutional Archive, 2012. 11 p.

[12] HEFFNER, K.., BLAIS, C. and GUPTON, K.. Strategies for Aligment and

Convergence of the Coalition Battle Management Language (C-BML) and the

Military Scenario Definition Language (MSDL) [on line]. [cited 2016-06-16].

Available from: <http://www.pegasim.com/CITT/4_Tasks/CBML_MSDL_

Alignment/AlginmentStrategiesForCBMLandMSDL-part2_final.pptx>.

[13] REMMERSMANN, T., SCHADE, U., REIN, K. and TIDERKO, A. BML for

Communicating with Multi-Robot Systems. In Proceedings of the 2015 Fall Sim-

ulation Interoperability Workshop. Orlando: SISO, 2015. 7 p.

[14] ÜNAL, Ö. and TOPÇU, O. Modelling Unmanned Surface Vehicle Patrol Mission

with Coalition Battle Management Language (C-BML). The Journal of Defense

Modeling and Simulation Applications, Methodology, Technology, 2014, vol. 11,

no. 3, p. 277-308.

[15] BROOK, A. and MIFSUD, M. Using C-BML in a persistent Coalition C2-

Simulation Experimentation Environment. In Proceedings of the 20
th

 Interna-

tional Command and Control Research and Technology Symposium , Annapolis:

International Command and Control Institute, 2015. 7 p.

[16] KHAYARI, R., LOTZ, H., KROSTA, U., KHIMECHE, L., CUNEO, X. and

REMMERSMANN, T. Practical Use of BML and MSDL Standards for Support-

ing French German Training. In Proceedings of the 2015 Fall Simulation In-

teroperability Workshop. Orlando: SISO, 2015. 9 p.

[17] GUSTAVSSON, P. M., WEMMERGARD, J. and JONSSON, F. Object-

Orientated Implementation of Grammar Based Battle Management Languages. In

Proceedings of the 2012 Spring Simulation Interoperability Workshop. Orlando:

SISO, 2012. 16 p.

[18] DEDERA, Ľ. Domain-Specific Languages for Command and Control Systems.

Science&Military, 2010, vol. 5, no. 1, p. 40-46.

[19] DEDERA, Ľ. Semantic Interoperability by Means of Computer Languages. In

Military Communications and Information Technology. A Trusted Cooperation

Enabler. Warsaw: Military University of Technology, 2012, vol. 1, p. 209-220.

[20] FOWLER, M. Domain-specific languages. Boston: Addison-Wesley Profession-

al, 2010. 597 p.

[21] DEDERA, Ľ. and BENČÍK, M. An example of a language representation based

on C-BML. In Proceedings of Communication and Information Technologies: 8
th

International Scientific Conference, Liptovský Mikuláš: Armed Forces Academy,

2015, p. 1-7.

[22] THE FLEX PROJECT [on line] Flex: The Fast Lexical Analyzer. [cited 2014-04-

09]. Available from: <http://flex.sourceforge.net/>.

[23] GNU.ORG [on line]. Bison - GNU parser generator. [cited 2014-04-08]. Availa-

ble from: <http://www.gnu.org/software/bison/>.

[24] GRUNE, D., VAN REEUWIJK, K., BAL, H. E., JACOBS, C. J. H. and

LANGENDOEN, K. Modern Compiler Design. New York: Springer, 2012.

822 p.

