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Abstract:  

In this study, Global Positioning System (GPS) simulation is employed to study the effect 

of five commonly used materials (aluminium, glass, wood, polyvinyl chloride (PVC) and 

ceramic) on multipath propagation of GPS signals. Based on the results of this study, it 

is found that multipath signals from panels made of the materials cause increase in 

probable error values due to errors in the GPS receiver’s pseudorange measurements. 

The probable errors decrease with increasing distances of the panels from the GPS 

receiver due to decrease of strength of multipath signals. It is observed that aluminium 

causes the highest amount of the multipath, resulting in the highest probable errors. This 

is followed by glass, ceramic, PVC and wood. 
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1. Introduction 

There is a steady growth in the entrenchment of Global Navigation Satellite Systems 

(GNSS) in current and upcoming markets, having penetrated various consumer 

products, such as cell phones, personal navigation devices (PNDs), cameras and 

assimilation with radio-frequency identification (RFID) tags, for various applications, 

including navigation, surveying, timing reference and location based services (LBS). 

While the Global Positioning System (GPS), operated by the US Air Force (USAF), is 

the primarily used GNSS system worldwide, the upcoming Galileo and Compass 
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systems, and the imminent conversion of Global’naya Navigatsionnaya Sputnikovaya 

Sistema (GLONASS) signals from frequency division multiple access (FDMA) to 

code division multiple access (CDMA) appear set to make multi-satellite GNSS 

configurations the positioning, navigation & timing (PNT) standard for the future.  

However, many GNSS users are still not fully aware of the vulnerabilities of 

GNSS systems to various error parameters, such as ionospheric and tropospheric 

delays, satellite clock and ephemeris errors, satellite positioning and geometry, radio 

frequency interference (RFI) and spoofing, and obstructions and multipath. These 

error parameters can severely affect the accuracy of GNSS readings, and in a number 

of cases, even disrupt GNSS signals [1-4].  

Multipath refers to the distortion of direct line-of-sight (LOS) GNSS satellite 

signals by localised reflected / diffracted signals, caused by objects such as trees, 

buildings, etc. As the multipath signals travel additional distances, they are delayed 

relative to the LOS signals, resulting in pseudorange measurements to the GNSS 

satellites being severely degraded. The multipath signals’ paths are dependent on the 

reflecting surfaces and satellites’ positions. As the satellites move with time, the 

multipath effect is also a variable of time. Multipath error is dependent on the 

architecture of GNSS receiver, in terms of the different ways the receivers deal with 

the signals [5-7]. 

Yi et al. [8] studied the effect of five commonly used materials (aluminium, 

glass, wood, polyvinyl chloride (PVC) and ceramic) on multipath propagation of GPS 

signals. The study was conducted via field evaluations using live GPS signals. 

However, such field evaluations are subject to various error parameters which are 

uncontrollable by users. 

The ideal GNSS receiver evaluation methodology would be using a GNSS 

simulator, which can be used to generate multi-satellite GNSS configurations, transmit 

GNSS signals that simulate real world scenarios, and adjust the various error 

parameters. This would allow for the evaluations of GNSS receiver performance under 

various repeatable conditions, as defined by users. As the evaluations are conducted in 

controlled laboratory environments, they will not be inhibited by unwanted signal 

interferences and obstructions [9-11]. 

As part of the 10
th

 Malaysian Plan (RMK10) project entitled Evaluation of the 

Effect of Radio Frequency Interference (RFI) on Global Positioning System (GPS) 

Signals via GPS Simulation (January 2011 – May 2012), the Science & Technology 

Research Institute for Defence (STRIDE) employed GPS simulation to study the effect 

of RFI on GPS signals [12, 13]. In addition, Dinesh et al. [14] used GPS simulation to 

study the effect of various scenarios of multipath on GPS accuracy, while Dinesh et al. 

[15] demonstrated the repeatability of multipath for every two GPS satelli te passes of 

approximately 23 h 56 min. 

In this study, GPS simulation is employed to study the effect the five materials 

(aluminium, glass, wood, PVC and ceramic) on multipath propagation of GPS signals. 

The study is conducted based on important characteristics of GPS signal obstruction 

and multipath [5-7]: 

i) Physical obstructions prevent certain GPS signals from reaching the GPS 

receiver, causing a reduction in number of visible GPS satellites 

ii) Multipath signals that are reflected off physical obstructions have lower 

power levels as compared to unaffected GPS signals 
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iii) The effects of GPS signal obstruction and multipath can be correlated with 

GPS satellite elevation, with the effects being at a maximum during low 

elevations and improving for higher elevations. 

2. Methodology 

The apparatus used in the study are an Aeroflex GPSG-1000 GPS simulator [16], a 

notebook running GPS Diagnostics v1.05 [17], and a Garmin GPSmap 60CSx 

handheld GPS receiver [18], which employs the GPS L1 coarse acquisition (C/A) 

signal. It is conducted in STRIDE’s semi-anechoic chamber [19] to avoid external 

interference signals and unintended multipath errors. The test setup employed is as 

shown in Fig. 1. Simulated GPS signals are generated using the GPS simulator and 

transmitted via the coupler. The following assumptions are made for the tests 

conducted: 

i) No ionospheric or tropospheric delays 

ii) Zero clock and ephemeris error 

iii) No unintended obstructions or multipath 

iv) No interference signals. 

 

Fig. 1 The test setup employed 

The date, coordinates and GPS signal power level of simulation are set at 

2 January 2014, N 2° 58’, E 101° 48’ (Kajang, Selangor) and –130 dBm respectively. 

The almanac data for the period is downloaded from the US Coast Guard’s web site 

[20], and imported into the GPS simulator. The test procedure is conducted for 

coordinated universal time (UTC) times of 0000, 0600, 1200 and 1800. 

Trimble Planning [21] is used to estimate GPS satellite coverage at the test area 

for the periods of the study in terms of position dilution of precision (PDOP) (Fig. 2), 

which represents the effect of GPS satellite geometry on 3D positioning precision. A 

PDOP value of 1 is associated with an ideal arrangement of the satellite constellation. 
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To ensure high-precision GPS positioning, a PDOP value of 5 or less is usually 

recommended. In practice, the actual PDOP value is usually much less than 5, with a 

typical average value in the neighbourhood of 2 [1, 22, 23]. The GPS satellites visible 

at the start of each test period are shown in Tab. 1. 

 

Fig. 2 PDOP of GPS coverage at the test area for the period of the tests. The x-axis is 

UTC time while the y-axis is PDOP 

(Source: Screen capture from Trimble Planning) 

The tests are initially conducted for non-multipath conditions, with the panel 

removed. Two conditions of GPS coverage are used; the full range of available GPS 

satellites, and only the six GPS satellites with the highest elevation at the start of each 

test period (assuming that the remaining GPS satellites are blocked by physical 

obstructions). The tests are then conducted for the panels (dimensions of 1 × 1 m) 

made of aluminium, glass, wood, PVC and ceramic, placed at distances of 1, 2 and 3 

m from the GPS receiver. For each reading, values of horizontal probable error (HPE), 

vertical probable error (VPE) and estimate probable error (EPE) are recorded for a 

period of 15 min. 

3. Results and Discussion 

As observed in Figs. 3-5, and Tab. 2, the decrease in number of visible satellites due to 

physical obstructions cause increase in probable error values. This is due to decreasing 

carrier-to-noise density (C/N0) levels for GPS satellites tracked by the receiver, which 

is the ratio of received GPS signal power level to noise density. Lower C/N0 levels 

result in increased data bit error rate when extracting navigation data from GPS 

signals, and hence, increased carrier and code tracking loop jitter. This, in turn, results 

in more noisy range measurements and thus, less precise positioning [2, 22, 24]. 
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Tab. 1 GPS satellites (SV) visible at the start of each test period. The satellites that are 

in bold have the highest elevations for each period and were selected for multipath 

simulation 

 

 

Tab. 2 Recorded average probable error values 
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Fig. 3 Recorded EPE values for the panels placed at 1 m at UTC times of: 

(a) 0000, (b) 0600, (c) 1200, (d) 1800 
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(c) 

 

 

(d) 

 

Fig. 4 Recorded EPE values for the panels placed at 2 m at UTC times of: 

(a) 0000, (b) 0600, (c) 1200, (d) 1800 
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Fig. 5 Recorded EPE values for the panels placed at 3 m at UTC times of: 

(a) 0000, (b) 0600, (c) 1200, (d) 1800 
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The multipath signals from the panels cause further increase in probable errors as 

the GPS receiver is tracking signals composed of the direct and multipath components. 

As the receiver cannot distinguish between the two components, it tracks composite 

signals, with the multipath component causing errors in pseudorange measurements. 

The probable errors decrease with increasing distances of the panels from the GPS 

receiver due to decrease of strength of multipath signals. 

It is observed that aluminium causes the highest amount of multipath, resulting in 

the highest probable errors. This is followed by glass, ceramic, PVC and wood. These 

results are consistent with the findings obtained in Yi et al. [8]. Metal materials, such 

as, in the case of this study, aluminium, cause total reflection of GPS signals and 

hence, higher multipath. For non-metal materials, the multipath effect is dependent on 

the dielectric constant, which indicates the polarisation of the material. Materials with 

higher dielectric constants cause higher multipath, and vice-versa. 

For all the readings, the values of VPE are larger than HPE, as GPS receivers can 

only track satellites above the horizon, resulting in GPS vertical (height) solution 

being less precise than the horizontal solution [1, 22, 23]. The reduction in number of 

visible satellites due to the introduction of physical obstructions causes increase in the 

differences between HPE and VPE values (Tab. 3), due to the removal of satellites 

above the horizon, while overhead satellites are maintained. 

Varying probable error patterns are observed for each of the readings. This is due 

to the GPS satellite constellation being dynamic, causing changing GPS satellite 

geometry over time, resulting in GPS accuracy being time dependent [1, 22, 23]. 

Dinesh et al. [24] demonstrated that multipath is highly repeatable as it is 

approximately the same when the GPS satellites are in the same positions with respect 

to the earth at every two orbital passes (approximately 23 h 56 min). This repeatability 

can be used to build a history of multipath occurrences over time, which can then be 

used to generate multipath corrections for stationary sites. 

The tests conducted in this study employed GPS signal power level of –130 dBm. 

Usage of lower GPS signal power levels would result in reduced C/N0 levels and 

hence, higher rates of increase of probable error values. 

4. Conclusion 

Based on the results of this study, it was found that the multipath signals from the 

panels caused increase in probable error values, due to errors in the GPS receiver’s 

pseudorange measurements. The probable errors decreased with increasing distances 

of the panels from the GPS receiver due to decrease of strength of the multipath 

signals. It is observed that aluminium caused the highest amount of multipath, 

resulting in the highest probable errors. This is followed by glass, ceramic, PVC and 

wood. 
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