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Abstract:

The paper presents two approaches for fault detacéind discrimination based on
principal component analysis (PCA). The first apr proposes the concept of
y-indices through a transposed formulation of tfetadmatrices utilized in traditional

PCA. Residual errors (REs) and faulty sensor idigation indices (FSlIs) are

introduced in the second approach, where REs areeigged from the residual sub-
space of PCA, and FSlls are introduced to class@nsor- or component-faults.
Through field data from gas turbines during comimisimg, it is shown that in-

operation sensor faults can be detected, and sermad component-faults can be
discriminated through the proposed methods. Thenigcies are generic, and will find
use in many military systems with complex, safeijical control and sensor

arrangements.
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1. Introduction

Fault Detection (FD) is an essential part in mijtaontrol systems for operational
reliability and safety. With regard to previoushported techniques for FD, principal
component analysis (PCA) has been one of the mmstlpr candidate solutions. An
overview of traditional PCA is given below.

1.1. Overview of Traditional PCA

PCA is extensively applied for data analysis pugso® reduce a large dataset whilst
preserving ‘sufficient’ information contained inettoriginal data [1]. LeX be the

original data matrix, with a mean 0.0 and a staddfviation 1.0.X 0 0", wherel
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rows indicate the dimensions of data, i.e. the @enswhileJ columns indicate the
repetition of data from the experiment, i.e. thedisteps. It can also be expressed as

X =X;,wherei=1,2,...landj=1, 2, ...,J. (D)
The empirical covariance matri; 0 0'*' | is derived using
c:%ZxXﬁ (2)

The eigenvectors and eigenvalues of the covariarateix are found from
VeV =4, 3)
whereV 00", with thel column vectors representing theigenvectors o€, and
400" is the diagonal matrix of eigenvalues@fwhere 4; = A fori =j =k with
A as thekth eigenvalue o€, and 4; =0 for i # j. The eigenvectors and eigenvalues
are rearranged in decreasing order. The cumulaive of the variance for thigh
eigenvalue is calculated from
[
§=) 45 fori=1,2, ... (4)
=1
Basis vectors are selected from a subset of theneagtors, while achieving a high
value ofs on a percentage basis, &Sgesnog=95% . When

S=p

|
24
j=1

2 Sthreshold? (5)

the first P columns ofV are used as the basis matky 00", withV,,; =V for
i=1,2,...1 andj=1, 2, ...P, where1<P<1. To describe the original data in
principal component space, the following relatisrused:

Y=V, X, (6)

where X O O"P is the principal component matrix, which is a esEntation ofX
after PCA, with theith row representing thgh principal component. Sinc¥, is

orthonormal, for any new input data sequenc&0'*, an approximation of is:
X=V,V,x. (7)

Decomposing the data matrix into two parts, thagpal component estimation part,
and the residual part, gives

X=X+e, (8)
where the residual can be expressed as
e={-v,v])x. 9)

Principal components have been considered as thset immportant presentations in
PCA, and have been used extensively for FD [2, 3].
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1.2. Principal Components

Assume the original data matr¥is anlxJ matrix, the principal component matk

is anlxJ matrix, with thejth column anx1 interpretation of the original data for the
jth sample. The first row of the principal componematrix is a 19 vector, which
possesses the greatest variance in the originah. daherefore, the principal
components, particularly the first, are often uded system monitoring and fault
detection. For instance, [2] presented a frameviaded on PCA to detect real-time
faults in an aluminium electrolysis process. Whepplging PCA, the principal
component space defined by the first and thirdgip@a components is designated for
FD. Abnormal events of the anode spikes are cledter a distinct area, identified as
the ‘problem area’, as shown in Fig. 1.
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Fig. 1 First and third principal component plot féault detection in aluminium
electrolysis process [2]

In Fig. 1, thejth point represents the total behaviour of all abies (sensors) at thj
time step, through which it becomes useful for eysmonitoring. However, external
algorithms are required in order to locate theltfgosition’ (i.e. the faulted sensor).

1.3. Squared Prediction Error

Residuals generated by PCA are variances that ate captured in principal
component space. When no faults are deemed to ésemr they represent normal
dynamics and noise present in the system, in th& P&idual sub-space. In the
presence of a sensor fault, there is divergencgen$or correlations, and the residual
vector deviates from the normal range. When a carapb fault occurs, excessive
variance can be identified in the residual spacel the residual vector will also
deviate out of the normal range.

According to (9), the squared prediction error (5&n be obtained from the
predicted residuak, as follows

SPEx) =[¢|* = x" (| VAl )x . (10)

Here, the eigenvector matri, is calculated from the previous data sets, i.e.dhta

history matrix, which is considered to be ‘normal’.

PCA based SPE, which is calculated in PCA residsisb-space, is well
established and extensively applied for FD in psscand power control [4-11].
Because SPE alone could not isolate the faulty seredditional algorithms are
necessary for specific sensor fault identificat{&fr1). For instance, a sensor validity
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index (SVI) was introduced for SFI in [4-8], and5®E-contribution plot is presented
as a supplement to SPE to diagnose sensor falls i9].

Paper [12] applied SPE for sensor fault detecti®®RY) on a building energy
management and control system subject to four faasdes, including (a) sensor bias,
(b) drifting fault, (c) precision degradation and) (complete failure, as shown in
Fig. 2. For each time step, the value of SPE remtes the variance in the residual
sub-space after PCA for all the sensors. When Ste&eeled the threshold, it indicated
abnormal behaviour data being read from the sensor.
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Fig. 2 Sensor fault detection by SPE [12]

However, such techniques require a 2-stage se@liemtocedure since SPE only
provides results from an amalgamation of charasties from the multiple sensors
within the group. Moreover, SPE may not be directljtable for systems where
sensor data is subject to bias or drifting, fotanse, which can be wrongly identified
as representing a sensor or component fault.

1.4. Concept of the Proposed Approaches

In the previous section, for both the principal gament and SPE plots, each point in
the plot represents the behaviour of all the sen&orone time step.

Here, a reformulation of principal component coricepproposed. Instead of
looking for differences of a sensors’ behavioud#dferent time steps, here, the focus
is to investigate differences between sensors wighgroup. This can be achieved by
performing PCA on the original data matdXxwith a dimension ofixl, whereld is the
number of samples, arlds the number of variables. The principal companaatrix
Y is aJx| matrix, with theith column aJx1 interpretation of the original data for the
ith sensor. The first principal component is thstfiow of the matrix, which is a 1x
vector. In this way, for a designed time periode tifferences between different
sensors can be found from the first, or the fiest f1¥ vectors, assuming it or they
cover sufficient variances of the original datayAndex is introduced that relates to
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the first principal component, a lLxector, y;. A time-rolling window is used, as
shown in Fig. 3. For each time step, a datasea fotal timet, is studied by PCA, and

| individually quantifiable numbers describe thefeliénces between thHesensors in
the sensor group. The resultihgepresentative characteristics are presentecetogbr
on a rolling timeframe, showing changes in sensehabviour that can be readily
identified.

PCA data set iner.
tb tx

total time

Fig. 3 The concept of PCA time rolling-in system

The second proposed approach is inspired by tditimal concept of PCA
based SPE, and is developed in the residual sutespaPCA. To employ traditional
SPE methods, prior knowledge of the process issseg, from which the SPE is then
calculated for new data from eigenvectors obtaifgd PCA from the ‘normal’
operating data. To avoid this, here, the residualrdRE) is developed by calculating
the residuals directly in real-time to monitor pb$s faults. As an alternative to the
original SPE, therefor&R is expressed as

R=XT(I -wWT)x, (11)

where X is the real-time data matrix after centring, withdimension ofixJ. RE is
calculated as the root-mean-square of the elentdni® where the mean is obtained
overJ samples. RE brings benefits for system monitorhognfdirect data acquisition,
where no prior knowledge is required.

In addition, where fault classification and ideigdtion is required, a faulted
sensor identification index (FSII) is introducedhave the missing sensor method is
used to calculate the difference between the gral@omponent in the absence of the
sensor, and with it included. FSlIs are used tockldifferent sensors’ behaviour. If
one FSII is significantly different from the othens the group, it is indicative of
divergent behaviour. Combining REs and FSlis thegrellows fault detection,
classification and identification to be achieved.

The proposedy-index’ method can be considered more robust thawipusly
proposed techniques since:

» It can perform sensor fault detection and iderdifien in one stage.

» Instead of investigating differences between a@eésndehaviour implicitly as a
function of time, the proposed method provides Itesuelating to the
differences of overall behaviour of a sensor wibhsideration of the behaviour
of other sensors within the group.

e The proposed method is suitable for sensor fauktai®n in situations subject
to bias and drifting during normal operation, whére results from traditional
PCA methods can lead to excessive false alarms.

And the proposed ‘RE’ approach brings the followbenefits:

» Unlike previous PCA based techniques, such as SEthad, which requires
training datasets from historical process dataefing the ‘normal’ behaviour,
the proposed RE method is based on the residueédpam real-time data.
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* Whilst SPE is only suitable to detect faults fopracess in steady state, RE is
developed for fault detection in a quasi-steadycpss (processes without very
dramatic transients).

e The moving window is designed to overcome the statalysis property of
PCA and is applied to real-time (dynamic) data.

2. Methodology

2.1. Problem Statement

To provide an illustrative focus to the proposedthodology, a group of four

vibration sensors sited on a twin shaft gas turlinased (X and Y orientations on
either end of a power turbine shaft), as shown i & Because of their relative
positioning it has been observed that the data friln@se four sensors show
qualitatively similar trends even when subjectitaations involving unit components
faults (as opposed to sensor faults). Practicamgkas of various conditions are
shown in Fig. 5.

Three typical classes of sensor faults have beentified viz. those that exhibit
transient ‘spikes’ in sensor readings (termed sfauits); anomalous constant readings
(termed constant faults); and long duration noisgdings (termed noise faults) [13],
as shown, respectively, in Figs 5(b), (c), (d). Sdelatasets are subsequently termed
Test 1, Test 2 and Test 3, and are used to inwstitpe application of-indices and
RE techniques.

2.2. Y-index

Assume the original data matri has a dimension afxl, whereJ is the number of
samples and is the number of sensors The first principal congu, a 1% vector,
Y., corresponds to the new axis with the greatesamaes. The-index is defined as

the integer part of the square root of the distdmetveen the absolute first principal
component values, to describe the differences hetwibe sensor reading data sets,

and is expressed as:
dy, = \/| Y1| - min(] Y1|) , (12)

wherey; is the first row vector of the principal componematrix, and|e| refers to the

absolute value. The greater tlyeindex, the more variance the particular sensor
measurement contributes in the original data.

Sensor 1 Sensor2  Sensor3 Sensor 4

AN ,f'!l AN /

Fig. 4 The structure of four vibration sensors awer-turbine shaft
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Fig. 5 Four sensor measurement characteristicsmgan emerging component
failure: (a) original; (b) Test 1: Transient faultsn Sensor 1; (c) Test 2: Constant
reading fault on Sensor 2; (d) Test 3: Excessiveatault on Sensor 4. (S =Sensor)

To check the efficacy of thg-index technique, Test 1 presents transient sensor
faults on sensor 1, while data from the other thseasors are considered normal.
Test 2 shows a constant-measurement fault on s@nsord Test 3 shows excessively
noisy sensor data on sensor 4. Validation checksarried out to calculate the errors

g betweeny, and y,, and the errors, betweend, and d,., in which y, is the

combined principal component vector that takes icdosideration all the principal
components in each row, and their variance contemisch contribute to the total
variance of the original data. The combined priatipomponent vector is then
expressed as

Ye = \/ (o) +(coy2 )’ +(cays) (13)
where ¢ is the variance content of thih principal component and; is theith row

vector in the principal component matrix — see €ahl, 2 and 3. Note: the term ‘PC’
refers to ‘principal component’} refers to the eigenvalue of the corresponding
principal component, anglindicates the cumulative sum of the variancesnfro

_ i
A and § =).c; wherei =1, 2, 3. (14)
=1

S5,
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Table 1 Validation check for Test 1

A c (%) s (%)
PC1 100.63 95.85 95.85
PC2 3.16 3.01 98.86
PC3 1.20 1.14 100.00
Y1 \Z) Y3 Ye € (%) dyc )
Sensor1 | 14.93 0.33 0.02 14.31] 4.15 3 3 0
Sensor 2 3.22 2.60 0.02 3.09 4.12 0 0 0
Sensor 3 5.76 1.17 1.34 5.52 4.15 2 2 0
Sensor 4 5.95 1.11 1.34 5.70 4.15 2 2 0
Table 2 Validation check for Test 2
p) c (%) s (%)
PC1 521.78 98.32 98.32
PC2 7.74 1.46 99.78
PC3 1.16 0.22 100.00
A Y, A Ye e (%) dy &
Sensor1l| 9.41 4.01 0.06 9.25 1.68 0 0 0
Sensor 2 | 34.20 0.26 0.01 33.63 1.68 5 5 0
Sensor 3| 12.15 1.74 1.35 11.95 1.68 2 2 0
Sensor 4| 12.63 2.01 1.28 12.42 1.68 2 2 0
Table 3 Validation check for Test 3
A c (%) s (%)
PC1 57.47 92.19 92.19
PC2 4.27 6.85 99.04
PC3 0.60 0.96 100.00
Y, Y Ys Ye & (%) dy &
Sensor 1| 1.47 0.53 0.36 1.36 7.78 0 0 0
Sensor 2| 2.59 1.19 1.02 2.39 7.76 1 1 0
Sensor 3| 5.38 2.41 0.26 4.96 7.76 2 2 0
Sensor4 | 8.73 0.94 0.07 8.05 7.81 3 3 0
The errors are calculated using
) :Mxloq%)_ (15)

C
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dyc is they-index calculated from the combined principal comgat vectolry,, which

dyc :\,|yc|_minqyc|) : (16)

Validation checks given in Tables 1-3 show thabaligh there are errors (<10%)
between the first row principal component vectord athe combined principal
component vector, foy-indices results, no difference exists betweentie vectors.
This shows a significant advantage for the efficieof they-index method. When the
y-index is calculated, only the largest eigenvalue tle covariance matrix is
considered to obtain the first row vector of thenpipal component matrix, and saves
significant computational effort for the calculat® of the remaining eigenvalues.
Moreover, when plotted, the one-dimensional charéstic provides detection results
graphically with respect to time.

is written as

H i i i
Sensor 1 Sensor 2 Sensor 3 Sengor 4

Fig. 6 The y-indices for the three test cases

For instance, thg-indices of the four sensors from the original degf and three test
cases, are presented in Fig. 6. The original dedgigesy-indices of four sensors to
be 1, 0, 1, 1, which is considered as ‘normal’ serisehaviour. From the results of
using the other three test data sets, it can he thext when thg-index is> 3, a sensor

fault is considered to have occurred.

2.3. RE and FSlI

An efficient adaption of the PCA-based algorithmni®w used to detect and classify
sensor- and component-faults. RE and FSII are Isatgle quantifiable measures
calculated from a PCA data set for each sensor.sTHour representative
characteristics can be presented using a ‘rollingdew’ to identify qualitative
changes in behaviour.

AssumeX is the original data matrix with a dimension lef], wherel is the
number of samples antlis the number of sensors. Recalling (11), the BEttiejth
sensor is defined as:

RE, = \/I—fli(xij - Xij)z . 17)

i=1
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RE is used to detect abnormal conditions, i.e. aaihponent faults or sensor faults,
during system operation. Abnormal behaviour is ¢atkd when the RE migrates out
of the normal range.

Since it is not possible for the sole use of the ®Edistinguish between
component- and sensor-faults, a further indicdtar,FSlI, is used. The proposed FSII
is based on the traditional concept of the ‘misssemnsor method’. Each row of
principal components is calculated with- and withthe respective sensor, and the
sum of squared differences is used for the FSplecS8ically, for thejth sensor:

I )
FSlI; =\/|—i12(y| ‘yi(”)2 : (18)
i1

wherey is the principal component vector computed in PCA.

Tab. 4 REs for the three test cases

Original data Testl Test 2 Test3
Sensor 1 1.123 1.218 1.112 1.107
Sensor 2 1.147 1.158 1.496 1.129
Sensor 3 1.219 1.208 1.203 1.197
Sensor 4 1.226 1.216 1.211 1.214

Tab. 5 FSillis for the three test cases

Original data Test1 Test2 Test3
Sensor 1 0.073 0.805 0.001 0.001
Sensor 2 0.017 0.003 1.042 0.003
Sensor 3 0.041 0.007 0.001 0.048
Sensor 4 0.053 0.007 0.001 0.587

FSIlI is paired with the RE to classify componentd asensor-faults. When a sensor
fault occurs, the FSll is also used to identify @hsensor in the group is in error.

The REs and FSlls of the four sensors from theimaigdata set, and the three
test cases, are listed in Tables 4 and 5. Frommebelts, it can be seen that when the
RE value is higher than ~1.2, both component fal@tsinal data from sensors 3 and
4) and sensor faults (Test 1 from sensor 1, Tdstrd sensor 2, Test 3 from sensor 4)
can be detected. According to the FSII table, i & seen that, for a unit fault
(original data), all the FSlls approach a relavilw level, less than 0.1, and for
sensor faults (Test 1-3), the FSII for the faulsedisor is much higher than those of the
other sensors, where the FSllIs of the normally atirey sensors’ approach zero.

3. Further Experimental Results
Using the rolling-window process depicted in Figvéhere the PCA data séj is
taken as 1000 minutes, and the time incremeist set to be 30 minuted,(is pre-

determined from the analysis of results from enggiritrials, andt; is designed
according to a time delay that is considered aad®etfor the application), thg
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index, RE and FSII, are applied to three field epla®, covering both normal unit
operation and operation when subject to known carapband sensor faults.

3.1. Normal Operation

Example data sets from vibration sensors are showifrig. 7(a), taken from a
randomly chosen field trial of normal unit operatidabelled as ‘Field Example 1'. It
can be seen that the characteristics are not coatypkEmooth and steady, but there are
no sudden unexpected transients, or any apparesbiseneasurement anomalies. The

corresponding-index is shown in Fig. 7(b), and the RE and F8H this dataset are
shown in Fig. 7(c).
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Fig. 7 Field Example 1: (a) Vibration measuremerits; Y-index; (c) RE and FSII
(S =Sensor)

The y-indices continually show either 0 or 1, and nctidit increase of the RE is
evident (the RE is much lower than 1.2). This wotllerefore be classified as ‘normal
operation’ from the perspective of an operator gagected). From site reports it is
known that no sensor faults or unit component faduwccurred during this period.

3.2. Sensor Fault Detection

Fig. 8(a) shows real-time data with a sensor fé&dt the operational gas turbine,
labelled as ‘Field Example 2'. Specific periods inferest are from 3000 to 6000
minutes, where a number of high-peak, ‘noisy’ readi from sensor 1 exist, and
during the 6000 to 7000 minute period where a ‘higtading appears on sensor 2
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measurements, and several high readings from sdnsaist (in practice a field
engineer is performing sensor checks by swappingass during this time — in effect
is creating anomalous conditions during unit ogengt

From Fig. 8(b), which shows thgindex plot for Field Example 3, it can be
observed that, after collecting the data, the inliex for sensor 1 rises to > 2. This is
an indication of a potential sensor problem, anrafurther three time steps, the
index exceeds the final warning value of 3, indimgtthat the operator should be
alerted to check this particular sensor since ishewing anomalous characteristics
compared to the rest. Notably, ‘the transient &uhat occur on sensor 2 and sensor 4
in the time period of 5800 to 5900 minutes have &lsen correctly identified.
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Fig. 8 Field Example 2: (a) Vibration informatiofh) Y-index; (c) RE and FSII
(S = Sensor)

Also, the sensor measurements ‘recover’ to norreébbiour i.e. within the range of
values of 0 and 1, after 7000 minutes (which inekié delay oft,, 1000 minutes),

indicated by the indices becoming normal afterfthdt has been cleared.

From Fig. 8(c) it can be seen that the RE is outasfge from 2100 to 6800
minutes. For this example, the RE shows a simitaracteristic to thg-index output,
with the fault being detected by both at around®2800 minutes. From the FSII
calculations, at 2200 minutes, the results for gefisare much higher than those of
the other sensors, with the FSlIs for the othessenapproaching zero. This identifies
a sensor fault, and not a component fault, andsiflas it as being on sensor 1. The
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transient faults on sensor 2 and sensor 4 areidésuified at ~5800 to 6000 minutes
from the two peaks on the respective FSII plots&f10 and 5900 minutes.

3.3. Component Fault Detection

High vibration and substantial mechanical transiecén cause degradation of the
turbine shaft bearings and potential damage tauttie Fig. 9(a) shows an example of
an emerging component fault, which occurs from acd4100 to 5100 minutes. After
increasing transient amplitudes, high vibrationdiegs occur on sensors 3 and 4. This
example is termed ‘Field Example 3. The correspogdy-index is plotted in
Fig. 9(b), and the RE and FSII are plotted in Bi@). It can be seen that, for the short
period during the emergence of the component falty-indices increase to 2, but
still does not exceed the limit of 3, which indieatthat it is not a sensor fault. The
corresponding RE plot shows data from sensors 3 amdmain beyond the limit
during the emerging fault period and the FSlisaréess than 0.1.
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Fig. 9 Field Example 3: (a) Vibration informatiof) Y-index; (c) RE and FSII
(S = Sensor)

RE’s ‘out of range’ is indicative of a fault emengi and when the FSllis all approach
a common level, close to zero, it indicates thdt tak sensors are behaving
consistently, evidencing a component fault as opgde a sensor fault. It is also clear
that the FSlls have to be used in conjunction whth RE for fault detection, since the
FSlis are only indicative of how differently thensers are behaving.
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Overall, sensor- and machine-fault detection caadmmplished by noting:

« For normal operatiory-indices are showing Os or 1s, and REs are muckrow
than the RE threshold;

« When sensor fault occungiindices are higher than the threshold value 3]evhi
REs are higher than the RE threshold value, antsFSlthe faulted sensor are
much higher than those of the normal sensors;

« When a highly-transient component fault occyrgdices remain lower than 3,
but the REs are higher than RE threshold value, R8s of all sensors
approach zero.

4. Conclusion

The paper has presented two readily implementabhte @mputationally efficient
approaches for FD using PCA baseihdices and REs. Thgindices are introduced
by using transformed PCA input matrices, and aedus detect and identify sensor
faults, while the REs and FSlls are applied to ctetnd classify component- and
sensor-faults. It has been demonstrated from varield data sets that a threshold for
the y-index value of 3 is reasonable for encompassirg ttiree categorized fault
scenarios, and is investigated using experimeniallston gas turbine systems. The
paired use of RE and FSIl has been considered domponent- and sensor-fault
detection and discrimination. Initially, RE is useéd detect abnormal operation
conditions, which could be caused by either a ferischange in measurement
amplitudes or a sensor fault. Then, FSIl is usediscriminate between component-
and sensor-faults, and also to identify the faukedsor (if one exists). The validity
and efficacy of the proposed approaches have bepwiustrated through the use of
real-time operational data from gas turbine systeand that in-operation sensor faults
can be detected and identified by both proposedomgpes. The techniques are
generic, and could find use in many complex miitaystems with critical safety
control requirements.
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